Skip to content Skip to navigation

Zlatko Erjavec

Prof. dr. sc. Zlatko Erjavec
Prodekan
Odjel:
Dekanat - Prodekan za studijske programe
Katedra za kvantitativne metode
 
+385 42 390841
 
FOI 1
Južno krilo, 2. kat
Kabinet
Broj prostorije: 81

Dodatne informacije

Znanstveni radovi

  • Z. Erjavec, J. Inoguchi, Geodesics and magnetic curves in the 4-dim almost Kähler model space F4, Complex Manifolds 11 (1) (2024), 20240001.
  • Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie groups Sol^4_1, J. Nonlinear Sci. 33:111 (2023), 37 pg.
  • Z. Erjavec, J. Inoguchi, Minimal submanifolds in Sol^4_1, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117:156 (2023), 36 pg.
  • Z. Erjavec, J. Inoguchi, Minimal submanifolds in Sol^4_0, J. Geom. Anal. 33:274 (2023), 39 pg.
  • Z. Erjavec, J. Inoguchi, Killing magnetic curves in H^3, Int. Electron. J. Geom. 16 (1), (2023), 181-195.
  • Z. Erjavec, M. Maretić, On translation curves and geodesics in Sol^4_1, Mathematics 11 (8), 1820 (2023), 10 pg.
  • Z. Erjavec, Geodesics and translation curves in Sol^4_0, Mathematics 11 (6), 1533 (2023), 9 pg.
  • Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie groups Sol^4_0, Math. Phys. Anal. Geom. 25: 8 (2022), 38 pg.
  • Z. Erjavec, J. Inoguchi, Magnetic curves in H^3×R, J. Korean Math. Soc. 58 (6) (2021), 1501-1511.
  • Z. Erjavec, J. Inoguchi, On magnetic curves in almost cosymplectic Sol space, Results Math. 75:113 (2020), 16 pg.
  • Z. Erjavec, On Killing magnetic curves in SL(2, R) geometry, Rep. Math. Phys. 84 (3) (2019), 333-350.
  • Z. Erjavec, Generalizations of Killing vector fields in Sol space, Filomat 33:15 (2019), 4803-4810.
  • Z. Erjavec, Generalization of Cayley Transform in 3D Homogeneous Geometries, Turk. J. Math. 42 (6) (2018), 2942-2952.
  • Z. Erjavec, J. Inoguchi, Killing Magnetic Curves in Sol Space, Math. Phys. Anal. Geom. 21: 15 (2018).
  • Z. Erjavec, J. Inoguchi, Magnetic curves in Sol_3, J. Nonlinear Math. Phys. 25 (2) (2018), 198-210.
  • Z. Erjavec, On a certain class of Weingarten surfaces in Sol space, Int. J. Appl. Math. 28 (5) (2015), 507–514.
  • Z. Erjavec, Minimal surfaces in SL(2,R) space, Glasnik matematički 50 (1)  (2015), 207-221.
  • Z. Erjavec, On Generalization of Helices in the Galilean and pseudo-Galilean space, Journal of Mathematics Research 6 (3) (2014), 39-50.
  • Z. Erjavec, D. Horvat, Biharmonic curves in SL(2,R) space, Mathematical communications 19 (2014), 1-9.
  • Z. Erjavec, B. Divjak, D. Horvat, The general solutions of Frenet's system in the equiform geometry of the Galilean, pseudo-Galilean, Simple Isotropic and Double Isotropic space, International Mathematical Forum 6 (2011), 17, 837-856.
  • B. Divjak, Z. Erjavec, B. Szabolcs, B. Szilagy, Geodesics and geodesic spheres in SL(2,R) geometry, Mathematical communications, Vol. 14 (2) (2009), 413-424.
  • B. Divjak, Z. Erjavec, The equiform differential geometry of curves in pseudo-Galilean space, Math Communications Vol. 13 (No. 2) (2008), 321-332.
  • B. Divjak, Z. Erjavec, Enhancing Mathematics for Informatics and its correlation with student pass rates, Internat. J. Math. Ed. Sci. Tech., Vol 39 (No. 1) (2008), 23-33.
  • Z. Erjavec, 2-coassociative QED Hopf algebra of planar binary trees, Int. J. Pure Appl. Math., Vol. 36 (No. 2) (2007), 167-173.
  • Z. Erjavec, 2-associative and 2-coassociative Hopf algebras of planar binary bitrees, Int. J. Pure Appl. Math., Vol. 27 (No. 1) (2006), 65-76.
  • Z. Erjavec, QED Hopf algebras on planar binary bitrees, Int. J. Pure Appl. Math., Vol. 26 (No. 2) (2006), 139-154.

 

ORCID   Google Scholar   Scopus   Web of Science