

FACULTY OF ORGANIZATION AND INFORMATICS

Miro Zdilar

AUTOMATED VERIFICATION OF
SPREADSHEET PROGRAMS

DOCTORAL THESIS

Varaždin, 2025.

FAKULTET ORGANIZACIJE I INFORMATIKE

Miro Zdilar

AUTOMATSKA VERIFIKACIJA TABLIČNIH
KALKULATORA

DOKTORSKI RAD

Varaždin, 2025.

DOCTORAL THESIS INFORMATION

I. AUTHOR

Name and surname Miro Zdilar

Place and date of birth Pula, June 24th 1970

Faculty name and graduation date

Current employment Raiffeisenbank Austria dd, Zagreb

II. DOCTORAL THESIS

Title
Automated Verification of Spreadsheet

Programs

Number of pages, figures, tables,

appendices, bibliographic information
Pula, June 24th 1970

Scientific area and field in which the title

has been awarded

Social Sciences, Information and

Communication Sciences

Supervisor Prof. Markus Schatten, PhD

Faculty where the thesis was defended
University of Zagreb, Faculty of

Organization and Informatics

Mark and ordinal number

II. GRADE AND DEFENSE

Date of doctoral thesis topic acceptance April 9th 2024

Date of doctoral thesis submission

Date of doctoral thesis positive grade

Grading committee members

Date of doctoral thesis defense

Defense committee members

Date of promotion

FACULTY OF ORGANIZATION AND INFORMATICS

Miro Zdilar

AUTOMATED VERIFICATION OF
SPREADSHEET PROGRAMS

DOCTORAL THESIS

Mentor: Prof. Markus Schatten, PhD

Varaždin, 2025

FAKULTET ORGANIZACIJE I INFORMATIKE

Miro Zdilar

AUTOMATSKA VERIFIKACIJA TABLIČNIH
KALKULATORA

DOKTORSKI RAD

Mentor: Prof. Markus Schatten, PhD

Varaždin, 2025

to my wife, Melita

and our angels Dominik and Gita,

With love

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who supported my research and

made this thesis possible. At first and foremost, my supervisor, Professor Markus Schatten PhD,

played a pivotal role in conducting my thesis research. Thank you, Professor Schatten!

Special thanks go to my colleagues and friends for evaluating developed prototypes during

my research and all the energy and effort they put into explanation of their laboratory processes

and analytical measurements.

To all my friends for their encouragement to stay focused when I was exhausted and who

never ran away during my stories about spreadsheet development and verification.

I am eternally grateful for the support of my friend Miljenko Košiček, whose memory will

forever motivate my work.

I would also like to thank my parents, who believed in me and encouraged me throughout

my graduate and postgraduate studies.

Finally, I am deeply grateful to my happy trio, especially to my wife Melita, for her

invaluable support, encouragement and understanding throughout this challenging research

journey. Without their patience and support, this thesis would never have been completed.

Abstract in English

Spreadsheets are widely used and can be considered as one of the most successful end-user

programming systems. End-user programming systems allow end-users to build and execute

powerful computer programs without the use of traditional programming languages and

supporting development tools. The combination of a visual grid, powerful built-in functions,

graphing capabilities, and user-friendliness makes spreadsheets an indispensable tool for

anyone needing to work with structured data. In enterprise environments, spreadsheets are

deeply integrated into core business operations. Their use extends beyond simple data entry to

underpin various business processes, particularly where data analysis, forecasting, and

decision-making are paramount. With recent technological advancements and new features

added, spreadsheets have become powerful computing platforms capable of complex analysis

and modelling. The spreadsheet research consistently demonstrates that spreadsheet errors are

omnipresent, with studies revealing error rates in a substantial percentage of models, ranging

from simple data entry mistakes to complex logical flaws in formulae. While there isn't one

universally adopted taxonomy of spreadsheet errors that supersedes all others, core distinction

between quantitative and qualitative errors remains central idea for research. Quantitative errors

directly lead to incorrect numerical values or logical flaws in the spreadsheet program direct

results. Qualitative errors do not immediately produce incorrect numerical values but represent

poor design practices, incorrect assumptions, or structural flaws that degrade the spreadsheet's

quality during the lifetime of spreadsheet. Qualitative errors increase the likelihood of future

quantitative errors, or make the spreadsheet difficult to understand, maintain, or debug. The

impacts of such errors can be severe, leading to flawed financial forecasts, incorrect scientific

analyses, misguided business decisions, legal liabilities, and even corporate collapses.

To address challenges associated with spreadsheet errors, research in spreadsheet quality

has focused on methods for finding (detection) and avoiding (prevention) spreadsheet errors.

Detection methods range from manual auditing and peer review to more sophisticated

techniques involving code analysis tools, testing-based techniques and data visualization for

anomaly detection. Prevention strategies emphasize best practices in spreadsheet design

including modularity, consistency with formatting and naming conventions and refactoring of

spreadsheet formulae with modern structured references and named objects.

In focus of this thesis is automated quality assurance for spreadsheets in multi-user

environments. Specifically, this thesis is structured around the novel ABAC4S (Attribute Based

Access Control for Spreadsheets) protocol designed for automated quality assurance of

spreadsheets in multi-user environments. Novel ABAC4S protocol for automated quality

assurance of spreadsheet programs uniquely addresses both methods in focus of quality

assurance research, finding (detection) and avoiding (prevention) of spreadsheet errors and

quality issues. As part of the research presented in this thesis, correctness of presented ABAC4S

protocol has been formally verified with model checking approach.

Keywords: Spreadsheets, Spreadsheet Errors, Attribute Based Access Control Protocol,

Unauthorized Spreadsheet Modifications, Model Checking

Abstract in Croatian

Tablični kalkulatori se koriste u raznim domenama ljudske djelatnosti i mogu se smatrati

jednim od najuspješnijih programskih sustava za krajnje korisnike. Programski sustavi za

krajnje korisnike omogućuju im da grade i izvršavaju složene računalne programe bez upotrebe

tradicionalnih programskih jezika i pratećih razvojnih alata. Tablični kalkulatori objedinjuju

ugrađene funkcije za izvođenje kompleksnih izračuna i alate za vizualizaciju podataka.

Jednostavnost korištenja, intuitivno sučelje i mogućnost brzog rješavanja složenih programskih

zadataka čine tablične kalkulatore moćnim alatom za obradu podataka.

U poslovnim okruženjima, tablični kalkulatori su nezamjenjiv alat za podršku poslovnim

procesima. Posebno je značajna uloga tabličnih kalkulatora u procesima predviđanja i

donošenja poslovnih odluka na temelju velike količine raznorodnih podataka. Pojavom

modernih tabličnih kalkulatora temeljnih na računalstvu u oblaku, tablični kalkulatori postali

su računalne platforme sposobne za složene analize i modeliranje.

Istraživanja i radovi temeljeni na različitim aspektima razvoja i korištenja tabličnih

kalkulatora dosljedno ukazuju na učestalost pogrešaka u tabličnim kalkulatorima, u rasponu od

jednostavnih pogrešaka kod unosa podataka do složenih logičkih pogrešaka u formulama i

izračunima. Iako ne postoji univerzalno prihvaćena taksonomija pogrešaka u tabličnim

kalkulatorima, jedna od često korištenih klasifikacija pogrešaka u tabličnim kalkulatorima,

razlikuje kvantitativne i kvalitativne pogreške kao temelj za daljnja istraživanja. Kvantitativne

pogreške izravno utječu na netočne numeričke vrijednosti ili logičke pogreške u trenutnim

rezultatima prikazanim u tabličnim kalkulatorima. Kvalitativne pogreške ne utječu na trenutni

prikaz podataka i rezultate u tabličnim kalkulatorima, već predstavljaju skup objedinjenih

pogrešaka koje su rezultat lošeg dizajna, netočnih pretpostavki korištenih u razvoju

programskog modela ili strukturne nedostatke koji smanjuju kvalitetu tabličnih kalkulatora

tijekom cijelog životnog ciklusa korištenja. Kvalitativne pogreške povećavaju vjerojatnost

budućih kvantitativnih pogrešaka i negativno utječu na održavanje ili ispravljanje pogrešaka u

tabličnim kalkulatorima. Posljedice takvih pogrešaka u tabličnim kalkulatorima mogu

uzrokovati nepouzdane financijske izvještaje, netočne znanstvene analize i krivo donošenje

poslovnih odluka koje u konačnici mogu uzrokovati potpuni kolaps i bankrot organizacija.

Recentna istraživanja u području tabličnih kalkulatora usredotočena su na metode

pronalaženja i izbjegavanja pogrešaka. Metode detekcije pogrešaka temelje se na manualnim i

automatskim metodama za otkrivanje pogrešaka. Manualne metode objedinjuju revizije

tabličnih kalkulatora i testiranja koje provode eksperti iz različitih poslovnih područja.

Automatske metode detekcije pogrešaka temelje se na alatima za analizu koda i tehnikama za

vizualizaciju i otkrivanje anomalija u podacima i izračunima. Preventivne metode za

izbjegavanje pogrešaka temelje se na primjeni najboljih praksi u dizajnu i razvoju tabličnih

kalkulatora, uključujući modularnost u dizajnu kompleksnih izračuna, te korištenje novih

funkcionalnosti i programskih jezika u modernim tabličnim kalkulatorima.

Istraživanje prezentirano u ovom radu temelji se na metodi automatiziranog osiguranja

kvalitete tabličnih kalkulatora u višekorisničkim okruženjima. Konkretno, ovaj rad prikazuje

koncept i strukturu novog protokola ABAC4S (engl. Attribute Based Access Control for

Spreadsheets) za automatizirano osiguranje kvalitete tabličnih kalkulatora u višekorisničkim

okruženjima. Novi ABAC4S protokol za automatizirano osiguranje kvalitete programa

tabličnih kalkulatora objedinjuje obje metode u fokusu istraživanja kvalitete tabličnih

kalkulatora: metode pronalaženja (detekcije) i metode izbjegavanja (prevencije) pogrešaka u

tabličnim kalkulatorima. U sklopu istraživanja prezentiranog u ovom radu, konceptualni model

ABAC4S protokola formalno je verificiran metodom provjere modela (engl. Model Checking).

Ključni pojmovi: tablični kalkulatori, pogreške u tabličnim kalkulatorima, kontrola pristupa

temeljena na atributima, metoda provjere modela

I

Contents

List of Figures .. III

List of Tables .. IV

List of Acronyms ... V

Spreadsheet Terms and Concepts ... VI

1. Research Methodology ... 1

2. Introduction and Motivation ... 4

3. Related Work .. 9

3.1. Taxonomy of Spreadsheet Errors ... 9

3.2. Automated Detection of Spreadsheet Errors .. 13

3.3. Access Control for Spreadsheets .. 15

3.3.1. Discretionary Access Control (DAC) .. 15

3.3.2. Mandatory Access Control (MAC) .. 16

3.3.3. Role-Based Access Control (RBAC) ... 16

3.3.4. Attribute-Based Access Control (ABAC) .. 16

4. ABAC4S Protocol ... 18

4.1. ABAC4S Protocol Service Specification ... 18

4.2. ABAC4S Protocol Environment .. 18

4.3. ABAC4S Protocol Data Model .. 19

4.3.1. Spreadsheet Conceptual Model .. 19

4.3.2. ABAC4S Protocol Access Rules.. 26

4.3.3. ABAC4S Protocol Algebraic Representation .. 27

4.3.4. Spreadsheet Resources as Direct graph .. 28

4.4. ABAC4S Protocol Sequence Diagrams ... 30

4.5. ABAC4S Protocol Access Rules Encoding ... 32

4.6. ABAC4S Protocol Processing Logic ... 36

II

4.6.1. Generating Direct Graphs for Spreadsheet States .. 37

4.6.2. Conflict Resolution for Access Rules .. 39

4.6.3. Determination of Changes Between Two Spreadsheet States 42

5. Model Checking .. 49

6. Model Checking the ABAC4S Protocol ... 51

7. Spreadsheet Quality Assurance ... 57

7.1. Spreadsheet Quality Model .. 57

7.1.1. Functionality ... 58

7.1.2. Reliability ... 59

7.1.3. Usability ... 60

7.1.4. Efficiency ... 61

7.1.5. Maintainability ... 62

7.1.6. Portability ... 63

7.2. Automated Spreadsheet Quality Assurance ... 64

8. ABAC4S Protocol Use Cases ... 67

8.1. IT Administrator Logbook ... 67

8.2. Calibrations of Sensors in Analytical Laboratory .. 73

8.3. Users’ Satisfaction with ABAC4S Protocol ... 80

9. Conclusion and Further Research ... 84

References .. 88

APPENDIXES ... 93

Appendix A. Structured Tables References ... 94

Appendix B. SMV Source Code .. 95

Appendix C. Example of ABAC4S Access Rules in JSON format 100

III

List of Figures

No. Figure name Page

Figure 1. Reseach Methodology based on Design Science Research .. 1

Figure 2. Conceptual model of spreadsheet resources and associated attributes. 20

Figure 3. Example of 3D referencing in Excel Spreadsheet. ... 24

Figure 4. Spreadsheet formula conceptual model. ... 25

Figure 5. ABAC4S protocol access rules for spreadsheets. ... 26

Figure 6. Spreadsheet resource graph node. ... 29

Figure 7. Single root path property for spreadsheet resources. .. 30

Figure 8. Sequence diagram for preventive mode of ABAC4S protocol implementation. 31

Figure 9. Sequence diagram for detective mode of ABAC4S protocol implementation. 32

Figure 10. Example of spreadsheet graph at state 𝑆𝑗 .. 37

Figure 11. Directed graph representation of spreadsheet at state 𝑆𝑗 .. 38

Figure 12. Example of spreadsheet graph at state 𝑆𝑗+1 .. 38

Figure 13. Directed graph representation of spreadsheet at state 𝑆𝑗+1 39

Figure 14. Visualized transition between two graphs .. 47

Figure 15. CTL path and temporal operators. .. 50

Figure 16. Hierarchy of spreadsheet resources as SMV language modules. 52

Figure 17. Spreadsheet quality model .. 58

Figure 18. Logbook Worksheet .. 72

Figure 19. Dashboard Worksheet ... 73

Figure 20. NTC Worksheet .. 79

Figure 21. Calculation Worksheet .. 80

IV

List of Tables

No. Table Name Page

Table 1. Taxonomy of spreadsheet errors .. 10

Table 2. Microsoft Excel errors and ERROR.TYPES()returned values. 35

Table 3. Algorithm ResolveConfig ... 41

Table 4. Mapping between GED operations and ABAC4S actions ... 46

Table 5. Example of mapping between GED and ABAC4S actions 48

Table 6. Summary of spreadsheet QA approaches .. 65

Table 7. Positive user experience with ABAC4S protocol .. 82

Table 8. Negative user experience with ABAC4S protocol ... 83

Table 9. Structured Tables References ... 94

Table 10. Developer access rules in JSON format ... 100

Table 11. Manager access rules in JSON format ... 102

Table 12. Analyst access rules in JSON format ... 104

Table 13. Administrator access rules in JSON format ... 105

V

List of Acronyms

A*GED A-Star Graph Edit Distance

ABAC Attribute-Based Access Control

ABAC4S Attribute-Based Access Control for Spreadsheets

ACL Access Control List

COM Component Object Model

CTL Computation Tree Logic

DAC Discretionary Access Control

DF-GED Depth-First Graph Edit Distance

DLL Dynamic Link Library

DSR Design Science Research

ECMA European Computer Manufacturers Association

ERP Enterprise Resource Planning

EuSpRIG European Spreadsheet Risks Interest Group

FLAME Formula Language Model for Excel

GED Graph Edit Distance

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

JSON JavaScript Object Notation

LLM Large Language Model

MAC Mandatory Access Control

NIST National Institute of Standards and Technology

NTC Negative Temperature Coefficient

QA Quality Assurance

RBAC Role-Based Access Control

SDLC Software Development Life Cycle

SpACE Spreadsheet Auditing for Customs and Excise

UML Unified Modeling Language

VBA Visual Basic for Applications

XLS Microsoft Excel Format Spreadsheet File

XLSX Microsoft Excel Open XML Format Spreadsheet File

XML Extensible Markup Language

VI

Spreadsheet Terms and Concepts

To ensure consistency of the research presented in this thesis, key spreadsheet terms and

concepts are defined. More detailed and comprehensive insights into other spreadsheet terms

and concepts are provided in later chapters of this thesis.

Spreadsheet Resource

Key concepts presented in this research relate to representation of spreadsheets as a

collection of spreadsheet resources. Intentionally, the term Resource is used in contrast to the

terms Object or Entity to avoid misinterpretation with Object Oriented Programming or

Relational Database Systems. Modern spreadsheets programming resembles many concepts

typically associated with Object Oriented Programming; however, spreadsheet resource should

not be perceived as object in Object Oriented Programming. Spreadsheet resources are a more

generic term representing multiple spreadsheets building components that are available to users

either as built in functionality within modern spreadsheets or custom spreadsheet resources that

users can construct with multiple different programming paradigms and tools.

Spreadsheet Program

Spreadsheet program consists of all spreadsheet resources utilized by spreadsheet users to

solve user’s problem. Most commonly, spreadsheet programs are constructed with built-in

spreadsheet calculation directives and data that are needed to properly specify spreadsheet

formulae. Some spreadsheet programs are simple one-time calculations, while others are used

for complex tasks and computational modeling. Enterprise spreadsheet programs are developed

to support organizational processes and support collaborative work of many spreadsheet users.

Spreadsheet Application

Spreadsheet application is a commercial application (like Microsoft Excel, Google Sheets,

or LibreOffice Calc) supporting development and execution of spreadsheet programs. Modern

cloud-based spreadsheet applications can be considered as powerful spreadsheet runtime

environments empowering users to develop spreadsheet programs with multiple programming

languages. One of the most popular spreadsheet applications is Microsoft Excel that can be used

either as a standalone application or powerful cloud-based spreadsheet application.

VII

Spreadsheet

In context of this research thesis, the term spreadsheet is used to represent union of

spreadsheet applications and spreadsheet program. Spreadsheet is a commercial spreadsheet

application executing user’s spreadsheet programs. Even though users can build their own

graphical user interfaces to interact with their spreadsheet programs, in most cases powerful

built in spreadsheet application interface is utilized for interaction with spreadsheet programs.

Spreadsheet Formula Language

A spreadsheet formula language is a specialized programming language used within

spreadsheet applications to construct spreadsheet programs, perform calculations and

manipulate data. While often considered simpler than general-purpose programming languages,

modern spreadsheet formula languages are very powerful, and they can theoretically simulate

any computer algorithm. The recent addition of LAMBDA function in Microsoft Excel allows

users to define reusable functions with recursions and function composition, making Excel a

functional programming environment. Regardless of popularity, commercial vendors have

never published official and concise grammar to facilitate parsing and analysis of spreadsheet

formula language. One of the most complete grammar specifications of spreadsheet formula

language has been published by Aivaloglou et al. [51].

Spreadsheet Error

According to the IEEE Standard Classification for Software Anomalies [52] an “error” is a

misapprehension on side of the one developing a software caused by a mistake or misconception

occurring in the human thought process. A “fault” is the manifestation of an “error” within a

software which may be causing a “failure”. A “failure” is the deviation of the observed behavior

of the software from the expectations. However, researchers and spreadsheet practitioners are

not consistent with IEEE Standard Classification for Software Anomalies [52] and “fault” and

“error” are often used as synonyms. This research thesis will continue with tradition of many

spreadsheet researchers and if not specifically written, term “error” will be used as synonym

for “error” or “fault”.

1

1. Research Methodology

The research methodology in this thesis follows the Design Science Research (DSR)

approach [35]. Activities and phases conducted during defined research methodology are

visually represented in Figure 1.

Figure 1. Reseach Methodology based on Design Science Research

DSR methodology is structured around three interconnected components or research phases

that should jointly deliver design science research artefacts. Specifically, the application of DSR

methodology to the research presented in this thesis resulted in the following method and

research phases:

• Environment: The environmental part of the Design Science Research methodology

has been defined in the Introduction and Motivation chapter of this thesis. In addition

to the presented spreadsheet horror stories, automated quality assurance methods for

finding (detection) and avoiding (prevention) spreadsheet errors have been presented.

Two use cases with application of developed ABAC4S protocol for automated quality

assurance of spreadsheets in multi-user environments have been demonstrated in this

research thesis.

2

• Knowledge Base: This research journey has started with comprehensive literature

review to understand existing knowledge base, as well as challenges and opportunities

required to deliver effective Design Science Research artifacts. Specifically, literature

review and discussions in this thesis have been focused on taxonomy of spreadsheet

errors, automated detection of spreadsheet errors and controlled access for spreadsheet

users in modern enterprises. Based on the existing knowledge base and literature review

conducted, automated quality assurance for spreadsheets has been identified as active

research domain with unmet research needs for finding (detection) and avoiding

(prevention) spreadsheet errors in multi-user environments. Furthermore, design

considerations for design science research artifact derived from existing knowledge

base have been combined with requirements to address unmet research and business

needs for automated quality assurance of spreadsheet programs in multi-user

environments.

• IS Research: Information System Research part of methodology represents a core set

of research activities presented in this thesis. Main deliverable of this research phase is

novel ABAC4S protocol for automated quality assurance of spreadsheets in multi-user

environments. The formal specification of novel ABAC4S protocol for spreadsheet will

be provided with multi-faceted approach and combination of visual modeling,

specification of protocol building blocks with algebraic data structures and direct graph

representation. As part of the ABAC4S protocol specification, algorithm to detect and

resolve conflicts between ABAC4S access rules is presented and formally evaluated for

correctness with model checking approach.

Aligned with the Design Science Research approach and requirements to develop novel

ABAC4S automated quality assurance protocol for spreadsheets in multi-user environments,

the first research goal for research presented in this thesis has been formulated:

• RG1: Develop formal description of ABAC4S protocol for automated quality assurance

of spreadsheets, capable of controlling user’s interaction with spreadsheets in multi-user

environments.

Research focused on formal description of ABAC4S protocol for automated quality

assurance has been inspired by conceptual model for measuring complexity of spreadsheets

[48] and spreadsheet representation as collection of resources [6]. The first research goal is the

3

basis for the second research goal, in that it provides specifications of the ABAC4S protocol

for automated quality assurance of spreadsheets that can be formally verified. The next step in

research presented in this thesis is evaluation of ABAC4S protocol correctness with a model

checking approach, which leads to second research goal:

• RG2: Evaluate correctness property of the proposed ABAC4S protocol for automated

quality assurance of spreadsheets with model checking approach.

To address the second research goal, ABAC4S protocol for automated quality assurance of

spreadsheets will be modeled as a system with a set of states and transition relations that specify

the behavior of the system. Aligned with the above research goals, the following research

hypothesis is formulated:

• H0: ABAC4S protocol for automated quality assurance of spreadsheets in multi-user

environments, correctly evaluates spreadsheet state changes for given user’s roles.

NuSMV model checker has been utilized to verify correctness property of the proposed

ABAC4S protocol for automated quality assurance of spreadsheets in multi-user environments

[25]. The selection of the NuSMV model checker has been primarily driven by the richness of

supported SMV language and its capability to specify hierarchical SMV modules that

correspond to the natural hierarchy of spreadsheet resources. Model checking tool explores all

possible traces in search of counterexample where desired property formulated with research

hypothesis is not satisfied.

Research presented in this thesis followed an iterative approach through experimentation,

simulation and model checking to refine outcomes of the research phases and fine tune

characteristics of developed ABAC4S protocol. Initial results of the ABAC4S protocol

verification with model checker and provided counterexamples were instrumental for ABAC4S

protocol redesign, including refinements of rules and algorithm for conflict resolution within

set of user’s access rules.

4

2. Introduction and Motivation

Spreadsheets are structured around a powerful and intuitive graphical user interface

represented as collections of two-dimensional grids. Each two-dimensional grid is a collection

of cells, uniquely identified by address represented with row and column index within the

respective grid. Spreadsheet computation capabilities are constructed with formulae placed in

cells depending on user’s need and spreadsheet program functionality. Spreadsheet

computations are event based, and changes introduced by an actor into the spreadsheet program

are immediately evaluated and computed. Spreadsheet actors are users working interactively

with spreadsheets or external systems capable of accessing spreadsheet programs through

interfaces. Commercial spreadsheets have a broad range of embedded formulae and support

various mechanisms for building extensions such as user defined formulae, customizations of

the spreadsheet interface and embedding new computational modules constructed with external

procedural, object oriented or functional programming languages.

Spreadsheets are widely used and can be considered as the most successful end-user

programming systems. End-user programming systems allow end-users to build and execute

powerful computer programs without the use of traditional programming languages and

supporting development tools. It has been estimated that the number of end-user programmers

outnumber traditional software programmers [1]. Spreadsheets are used in almost all companies

in the US and Europe [2]. Modern enterprises use spreadsheets to support key processes such

as capacity planning, financial reporting, stakeholder analysis, risk management, performance

calculation, data transformation, cash-flows analysis, time-series transformations and

simulations [3]. The European Spreadsheet Risk Interest Group (EuSpRIG), a non-profit and

voluntary organization maintains a list of horror stories that illustrate problems with

uncontrolled usage of spreadsheets [5]. The following are summaries of several spreadsheet

horror stories that caused reputational and financial impacts on individuals, organization and

institutions.

16000 UK Covid-19 test results lost for weeks

The issue in this case is that PHE’s (Public Health England) own developers picked an old

file format to develop spreadsheet program – known as XLS. Consequently, each template

could handle only about 65000 rows rather than the one million-plus rows that Excel is actually

capable of. When the limit of an old file format was reached, further cases were simply left off.

5

To handle the problem, PHE is now breaking down the test result data into smaller batches to

create a larger number of Excel templates.

Scientists rename human genes to stop Microsoft Excel from misreading

The bioinformatics community decided it was easier to change gene symbols than changing

peoples' habits. When scientists want to process numerical data, spreadsheets are often used to

import/export numerical data and perform further analysis. Uncontrolled process for numerical

data formatting and data type designation, caused wrong data type inference and unwanted data

transformations.

Unofficial spreadsheets land Italian pharma plant with regulatory warning

Regulatory warning was issued to Italian pharma company due to the use of “unofficial”

and uncontrolled spreadsheet on a shared network drive.

The Norwegian Sovereign Wealth Fund's $92 Million Excel Error

In 2024, Norway's sovereign wealth fund revealed that it had lost roughly $92 million, on

an error relating to how it calculated its mandated benchmark. Calculation error was discovered

in the composition of the index, because an incorrect date was manually entered in the

spreadsheet.

Excel formula error inflated myocarditis statistics

According to UK National Health Service, the initial claim of 8% of people affected by

heart issues have been corrected to 0,01%, due to excel formula error that occurred during the

process of simplifying the data into a pivot table. The value that was displayed was the sum

total of a numeric value within the raw data, specifically a row count, as the years progressed

the row count increased meaning the sum was greater. The value displayed should have been a

count and not a sum.

Spreadsheet error led to Edinburgh hospital opening delay

Human errors in spreadsheet with the specification for air flow in critical care rooms have

been discovered prior to hospital opening day. Independent checks found that critical care

rooms were operating with the wrong air flow. Remedial work to correct identified spreadsheet

error with the wrong air flow has been estimated to 16 million GBP.

6

Private data leakage in spreadsheet “hidden” column

Global aerospace firm Boeing reported in 2017 that a company employee mistakenly

emailed a spreadsheet full of employee personal data to his spouse. The spreadsheet, sent to

provide the employee’s spouse with a formatting template, contained the personal information

of roughly 36,000 other Boeing employees, including Social Security numbers and dates of

birth, in hidden columns.

Spreadsheet error costs Tibco shareholders $100M

Tibco Software shareholders will be getting $100 million less than originally anticipated

from the company’s more than $4 billion sale to Vista Equity Partners because of a spreadsheet

error that overstated Tibco’s equity value. According to a regulatory filing, Goldman Sachs,

which is advising Tibco on the deal, used the spreadsheet in calculating that Tibco’s implied

equity value was about $4.2 billion.

$1,1 Billion “Honest Mistake” error in financial result statement

Fannie Mae, the mortgage company, made a $1.1 billion mistake in a spreadsheet during

adoption of new accounting standards. Fannie Mae senior vice president for investor relations,

said: “There were honest mistakes made in a spreadsheet used in the implementation of a new

accounting standard.”

Ticket mishap at the London 2012 Olympics

Booking tickets for the 2012 Olympic games in London was done in rounds. Thousands of

tickets were unclaimed when second-round ticket sales of the synchronized swimming

competition began. After realizing something was off, it was revealed that an employee for the

ticketing company made the simple mistake of typing “2” instead of “1”, resulting in 20000

seats going on sale instead of 10000. Fortunately, this error was identified early on and those

who purchased tickets to what essentially amounted to non-existent seats were able to exchange

them for other events within the games. Some customers even saw this as a blessing in disguise;

they were upgraded from their original purchase and ended up attending higher profile

competitions which would not have been possible otherwise.

7

MI5 makes 1,061 bugging errors

UK secret intelligence MI5 wrongly bugged more than 1000 phones. MI5 stated that a

spreadsheet formatting error caused formatting to be applied on telephone numbers ending in

000 rather than the actual last three digits.

Research consistently demonstrates that spreadsheet errors are omnipresent, with studies

revealing error rates in a substantial percentage of models, ranging from simple data entry

mistakes to complex logical flaws in formulae. Based on research into spreadsheet errors,

several taxonomies have been developed over time to classify different types of errors. While

there isn't one universally adopted taxonomy that supersedes all others, researchers like Panko

[10] and Rajalingham [12] classified spreadsheet errors into qualitative and quantitative errors.

Quantitative errors directly lead to incorrect numerical values or logical flaws in the spreadsheet

program direct results. Qualitative errors do not immediately produce incorrect numerical

values but represent poor design practices, incorrect assumptions, or structural flaws that

degrade the spreadsheet's quality during the lifetime of spreadsheet. Qualitative errors increase

the likelihood of future quantitative errors, or make the spreadsheet difficult to understand,

maintain, or debug. The impacts of such errors can be severe, leading to flawed financial

forecasts, incorrect scientific analyses, misguided business decisions, legal liabilities, and even

corporate collapses [4].

To address challenges associated with primarily qualitative spreadsheet errors, research in

spreadsheet quality has focused on methods for finding (detection) and avoiding (prevention)

spreadsheet errors. Detection methods range from manual auditing and peer review to more

sophisticated techniques involving code analysis tools, testing-based techniques and data

visualization for anomaly detection. Prevention strategies emphasize best practices in

spreadsheet design including modularity, consistency with formatting and naming conventions

and refactoring of spreadsheet formulae with modern structured references and named objects.

Furthermore, the development and application of formal quality frameworks and system

development methodologies for spreadsheets follow proven and established development

principles from general software engineering practices. These frameworks promote structured

approaches during the whole life cycle of spreadsheet programs, with robust version control,

user validation, static and dynamic testing, and the implementation of internal controls.

Based on existing knowledge base and literature review conducted, automated quality

assurance for spreadsheets is active research domain with unmet research needs for qualitative

spreadsheet errors in multi-user environments. Research presented in this thesis will define

novel ABAC4S protocol for automated quality assurance of spreadsheet programs. Novel

8

ABAC4S protocol for automated quality assurance of spreadsheet programs uniquely addresses

both methods in focus of quality assurance research, finding (detection) and avoiding

(prevention) of spreadsheet errors and quality issues. The formal specification of novel

ABAC4S protocol for spreadsheet will be provided with multi-faceted approach and

combination of visual modeling, specification of protocol building blocks with algebraic data

structures and direct graph representation. A multi-faceted approach allows clear

communication of research deliverables to thesis readers and other researchers focused on

exciting research related to spreadsheets. As part of the ABAC4S protocol specification, novel

algorithm to detect and resolve conflicts between ABAC4S access rules is presented and

formally evaluated for correctness with model checking approach. Detailed steps and research

journey from original ABAC4S protocol idea to formal specification of the protocol in

applicable model checking language is presented in this thesis. Finally, as part of the research

presented in this thesis, the use cases of ABAC4S protocol evaluation within IT department and

analytical laboratory are presented with documented ABAC4S access rules derived from

organizational processes and users job descriptions.

9

3. Related Work

The tremendous success of spreadsheets and impact of spreadsheet errors triggered

significant interest of the research community. In this thesis, I followed approach to literature

review presented by Powell et al. [11]. Rather than give a chronological account of the literature

on the spreadsheet research, discussion in this thesis is focused on taxonomy of spreadsheet

errors, automated detection of spreadsheet errors, and controlled access for spreadsheet users

in modern enterprises.

3.1. Taxonomy of Spreadsheet Errors

Understanding types of spreadsheet errors is an important aspect of spreadsheet research

and key to effective detection and prevention of spreadsheet errors.

Early studies listed types of errors detected without classification of spreadsheet errors. Brown

and Gould [7] conducted reviews and experiments with volunteers experienced with

spreadsheet use and development. As a part of the experiment, volunteers had to complete three

tasks and create three different spreadsheets according to the instructions. Authors measured

time required to complete the tasks, accuracy and visual appearance of final solution. An

interesting part of this experiment was the use of a key logger [8] that recorded keystrokes of

participants during the experiment and allowed insights to user behavior during completion of

given tasks. Regardless of the limited number of participants, the experiment identified errors

in formulae, mistyping, rounding and logical errors.

Galetta et al. [9] introduced two classes of spreadsheet errors. Authors distinguished

between domain errors and device errors. The domain refers to the spreadsheet application area

(e.g., accounting), while the device refers to the spreadsheet technology itself. For example, a

mistake in logic due to a misunderstanding of depreciation is a domain error, but entering the

wrong reference in the depreciation function SLN is a device error. Authors conducted an

experiment with thirty accounting experts and thirty students to seek up to two errors introduced

in each of six spreadsheets used during experiment. While accounting experts performed better

in detection of domain errors, students demonstrated comparable performance in detection of

device errors.

In one of the first attempts to offer a complete classification of errors, Panko and Halverson

distinguished between quantitative and qualitative errors [10]. Quantitative errors are related to

the current version of the spreadsheet, while qualitative errors refer to risky practices that might

lead to an error in later stages of a spreadsheet’s lifecycle. Panko and Halverson further divided

10

quantitative errors into three subcategories: (i) mechanical errors, due to mistakes in typing or

pointing, (ii) logic errors, due to choosing the wrong function or creating the wrong formula,

and (iii) omission errors, due to misinterpreting the situation to be modeled. In critics of the

above presented classification, Powell at al. [11] noted that this proposed classification does

not consider context of spreadsheet use and how each error was committed.

The taxonomy of errors for spreadsheets developed by Rajalingham et al. [12] is one of the

first attempts that introduced different spreadsheet user roles. Hierarchical view of taxonomy

of errors for spreadsheets developed by Rajalingham et al. [12] is presented in Table 1.

Table 1. Taxonomy of spreadsheet errors

A. SYSTEM-GENERATED

B. USER-GENERATED

a. QUANTITATIVE

i. ACCIDENTAL

1. DEVELOPER (workings)

a. Omission

b. Alteration

c. Duplication

2. END –USER

a. DATA INPUTTER (Input)

i. Omission

ii. Alteration

iii. Duplication

b. INTERPRETER (output)

i. Omission

ii. Alteration

iii. Duplication

ii. REASONING

1. DOMAIN KNOWLEDGE

a. REAL-WORLD KNOWLEDGE

b. MATHEMATICAL REPRESENTATION

2. IMPLEMENTATION

a. SYNTAX

11

b. LOGIC

C. QUALITATIVE

a. SEMANTIC

i. STRUCTURAL

ii. TEMPORAL

b. MAINTAINABILITY

This taxonomy is focused on user-generated errors and differentiates between developer

and end-user errors. End-users are further classified as data inputter and interpreter. However,

the given taxonomy classifies quantitative accidental errors as omission, alteration or

duplication, without taking into consideration the possible errors caused by unauthorized

changes in multi-user environments. Quantitative errors directly lead to incorrect numerical

values or logical flaws in the spreadsheet program direct results. Sub-categories of quantitative

spreadsheet errors often include the following:

• Mechanical Errors: Simple slips or mistakes, such as typos, incorrect data entry, or

incorrect cell references due to pointing errors.

• Logic Errors: Flaws in the underlying reasoning or formula construction, where the

formula itself is incorrect for the intended calculation. Examples of logical errors are

using the wrong spreadsheet function, incorrect parameters during function invocation,

incorrect operator, or flawed algorithm.

• Omission Errors: Omission errors occur when required data or calculation formulas are

accidentally left out, leading to incomplete or inaccurate results. This can also include

misinterpretation of the problem to be modeled.

• Accidental Errors: Accidental errors occur as result of user’s negligence, stress or

oversight, often leading to immediate issues with spreadsheet programs.

• Reasoning Errors: Reasoning errors stem from wrong or flawed users understanding of

the problem or the spreadsheet's functionality, leading to incorrect intentions or actions.

Qualitative errors do not immediately produce incorrect numerical values but represent poor

design practices, incorrect assumptions, or structural flaws that degrade the spreadsheet's

quality during the lifetime of spreadsheet. Qualitative errors increase the likelihood of future

quantitative errors, or make the spreadsheet difficult to understand, maintain, or debug. Sub-

categories of qualitative spreadsheet errors often include the following:

12

• Structural Errors: Structural errors represent non-compliance or gaps to spreadsheet

development standards or best practices. Typical structural errors found in spreadsheets

are flaws in the design or layout of the model, incorrect or ambiguous labeling, poor

formatting, or issues that make the spreadsheet hard to navigate or understand. Hard-

coding numbers directly into formulae instead of referencing named reference is a

common example.

• Temporal Errors: Temporal errors relate to using outdated or non-current data. One

additional challenge when spreadsheet programs output questionable data is

inappropriate use of volatile functions in Microsoft Excel spreadsheet. Volatile

functions update dynamically whenever Excel recalculates, even if no changes are

introduced to the spreadsheet program. This includes functions like TODAY(), NOW(),

RAND(), RANDBETWEEN(), and certain versions of CELL(), OFFSET(),

INDIRECT(), and SUMIF()depending on their arguments. The resulting value of the

volatile functions cannot be assumed to be the same from one moment to the next even

if none of its arguments (some functions do not require input arguments) have changed.

In addition to frequent cause of temporal errors when used inappropriately, volatile

functions might cause degradation in spreadsheet performance due to frequent

recalculations. For example, the use of function TODAY() in a cell will always display

the current date in a cell and will update to tomorrow’s date if the spreadsheet is opened

tomorrow. In contrast, the use of function DATE(2025, 06, 09) in a cell will

always show June 09, 2025 (depending on cell formatting), regardless of when the

spreadsheet is opened or recalculation is triggered by user. It is important to note that

system time information used for date functions in spreadsheets is primarily derived

from device’s clock and time settings in case of standalone spreadsheet applications and

from browser settings in case of cloud-based spreadsheets.

• Maintainability Errors: Maintainability errors stem from overcomplex spreadsheet

programs and design issues that make the spreadsheet difficult to update, audit, or

maintain in the future.

• Semantic Errors: Semantic errors occur when a spreadsheet program's code is correct

from a syntax standpoint but produces unpredictable or incorrect results due to flaws in

the underlying algorithm or logic.

13

While there isn't one universally adopted taxonomy of spreadsheet errors that supersedes

all others, core distinction between quantitative and qualitative errors remains central idea for

research. Recent upgrades to spreadsheet error taxonomies tend to offer more granular

description and sub-classifications for quantitative and qualitative errors.

3.2. Automated Detection of Spreadsheet Errors

An automated method to infer data types from a spreadsheet was presented by Erwig and

Burnett [16]. The proposed method for inferring types from spreadsheets is based on the

concrete notion of units instead of the abstract concept of types. Authors used header

information given by spreadsheets to derive units. In continuation of the presented concept

around units, Ahamd et al. developed a type system for statically detecting spreadsheet errors

[17]. The authors named the proposed model “unit checking” and presented a collection of rules

that help identify weaknesses in spreadsheets that are likely to be errors. This model also relies

on the concept of the header that defines common units for grouped cells. The working

prototype based on the proposed model was developed for a specific version of Microsoft Excel

spreadsheet application using the UCheck tool [18]. Authors validated performance of the

UCheck tool in an experiment conducted with high school teachers [19]. Results of this

experiment indicated that the tool effectively supports users in error correction.

High incidents of spreadsheet errors have led to a series of commercial software packages.

Nixon and O’Hara provided structured assessments of several commercial auditing tools [20].

The test was designed to identify the success of software tools in detecting different types of

errors, to identify how the software tools assist the auditor and to determine the usefulness of

the tools. The assessment conducted by Nixon and O’Hara included the built-in auditing tool

in Microsoft Excel spreadsheet [20]. Excel’s built-in formula auditing tool supports

visualization of spreadsheet formulas and error checking generated as result of formula

evaluation. As of today, Microsoft Excel will notify users with the following errors as result of

invalid formula evaluation:

• #DIV/0

• #N/A

• #NAME?

• #NULL!

• #NUM!

• #REF!

14

• #VALUE!

• #GETTING_DATA

• Anything else (returns #N/A)

Due to the constant innovation in spreadsheets, the above list will have to be reviewed and

updated to match new functionalities in recent versions of commercial spreadsheets. For

example, introduction of lambda function in the latest development version of Microsoft Excel

spreadsheet allows users to generate custom reusable functions and use recursions without the

need of external programming languages. Recursions in lambda formula will require review

and potential redesign of existing formula evaluation errors.

Aurigemma and Panko conducted a study to evaluate two commercial spreadsheet static

analysis tools, both with each other and human auditors [37]. Overall results of automated static

analysis tools did not outperform human auditors. The 33 human inspectors found 54 out of 97

errors, while only 5 errors were tagged by two commercial tools. These results cannot be

generalized to wider context of spreadsheet use and all stages of spreadsheet lifecycles.

However, results presented, and overall performance of automated static analysis tools

indicated direction for future research.

In the second study, the auditing procedure used by HM Customs and Excise was described

by Butler [38]. This procedure is hybrid and includes manual activities performed by expert

auditors, as well as automated activities performed with commercial software tool (SpACE).

The procedures work as follows. First, the auditor identifies the chain of cells from inputs to

end result and uses the software tools (SpACE) to follow the chain of dependent cells so that

the key formulas can be checked. Then the auditor checks the original formulas that were used

to copy related formulas, and checks that the copies are correct. Main contribution of automated

software tool used in this procedure is to speed up the overall review process and assist human

auditor with high-risk cells.

In addition to research related to automated error detection, important to note is the work of

Abraham and Erwig related to automation of spreadsheet testing [21]. The authors followed the

original concept of mutation testing for general purpose programming languages and developed

mutation operators for spreadsheets that allow generation of test cases.

Spreadsheets allow users to arrange data and metadata freely in a human readable format.

To extract their content with automated tools, data practitioners need to perform manual

inspections and data preparations. The Mondrian system assists users with detection of

multiregion layout templates in spreadsheets [36]. Mondrian comprises an automated approach

15

to detect multiple data regions and an algorithm to compute layout similarity and identify

templates with potential spreadsheet errors.

Recent spreadsheet research is focused on the application of large language models to

improve spreadsheets quality. A team of researchers from Microsoft Corporation developed the

FLAME language model for spreadsheet formulae [22]. FLAME uses the Microsoft Excel

specific formula tokenizer and other techniques to achieve competitive performance with a

substantially smaller model (60 million parameters) and training dataset, compared to other

large language models such as Codex. Researchers used a training dataset of 972 million

formulas extracted from a corpus of 1,8 million Excel workbooks. FLAME was evaluated on

three different tasks for Excel formulas: last-mile repair, autocompletion and syntax

reconstruction. The presented FLAME language model outperformed larger language models,

such as Codex-Davinci (175 billion parameters), Codex-Cushman (12 billion parameters), and

CodeT5 (220 million parameters), in 6 out of 10 experimental settings [22].

3.3. Access Control for Spreadsheets

Access control and authorization are key components of information technology systems in

multi-user environments [23]. Focus of researchers have been around modelling different

access control systems, evaluation and comparison of access control models deployed to

various technical and operational environments, and formal verification of access control

models in context of specific algorithms and protocols. Following is the summary of common

access control models that have been analyzed for their suitability in development of access

control protocol for spreadsheets [39].

3.3.1. Discretionary Access Control (DAC)

Discretionary Access Control (DAC) is access control model built with three major

components – objects, subjects, and permissions. DAC allows owners (subjects) to control

permissions to their objects and is commonly implemented with Access Control List (ACL).

DAC is implemented as an integral part of many information technology systems, such as

operating systems and databases. DAC has been part of commercial spreadsheet

implementation for decades and allows spreadsheet owners to control user’s access to specific

cells or worksheets. Downs et al. [40] studied issues with DAC, and this type of access control

does not allow granularity for different roles, centralized administration with access policy and

16

monitoring data flow becomes almost impossible as the spreadsheet program grows in

complexity.

3.3.2. Mandatory Access Control (MAC)

Mandatory Access Control (MAC) is access control model managed in centralized manner

and is built with four key components – a set of objects, a set of subjects, permissions, and

security level. Even though MAC allows centralized policy management, it is very complex to

implement this type of access control on all spreadsheet resources due to mandatory security

level assigned to both subjects and objects. In addition, security levels specified in traditional

MAC have been considered by researchers as antiqued [41]. Due to mandatory security level

for subjects and objects, MAC is very complex for implementation and does not fit to technical

and organizational dynamics of modern enterprises.

3.3.3. Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is access control model based on following key

components – subjects, roles, permissions, actions, operations, and objects. In context of

RBAC, role means a group of permissions to use object(s) and perform certain action(s). Only

designated administrators have the right to control system security and manage roles assigned

to users. RBAC implementation has been studied in hospital management where roles allow

modeling complex relationships between doctors, nurses, and other hospital stakeholders [42].

However, modeling and maintaining roles for different spreadsheet user roles and groups is

very complex, especially in dynamic organizations where business processes and corresponding

user roles are rapidly changing.

3.3.4. Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC) is access control model based on following three

types of dynamic attributes – subjects, objects, and environments. User requests are resolved

and determined based on subject attributes, objects attributes, environmental attributes as well

as set of conditions specified by access policy. ABAC model is dynamic as it uses state of

attributes at the time of access mode resolution.

Even though limited literature on the application of ABAC access control model to

spreadsheets has been found, following ABAC access control model properties have been

17

instrumental for development of ABAC4S protocol for automated quality assurance of

spreadsheets in multi-user environments:

• ABAC model is based on dynamic attributes, where object attributes fit to our proposed

model of spreadsheet resources and corresponding attributes.

• Hierarchy of spreadsheet resources and objects can be modelled with set of ABAC

conditions and access rules determinations. This property prevents conflicts in access

resolutions and simplifies prototype implementation.

• Deployment opportunities for ABAC with spreadsheets are flexible and allows early

prototype implementation as detective access control system. This minimizes impact on

users and their interaction with spreadsheet interface.

• Complexity of ABAC model for spreadsheets depends on number of spreadsheet

resource attributes.

• Dynamic nature of modern cloud-powered spreadsheets and extensions to spreadsheet

formula language fits nicely to ABAC dynamic attribute concept. Potential new

functionalities and modules added in cloud-powered spreadsheet can be integrated

within existing ABAC concepts.

Unified metamodel of enterprise authorizations is summarizing existing models of access

controls [23]. In addition, authors provided mapping between presented unified metamodel and

ArchiMate tool that is frequently used in modern enterprises as architecture modeling language.

List of generic metamodels for expressing different configurations of access models has been

valuable starting point for this research and design of ABAC metamodel for spreadsheets.

ABAC modelling and implementation has been recognized by U.S. government as

important access control modelling concept for large enterprises and federal information

technology systems. National Institute of Standards and Technology (NIST) published in 2014

Special Publication 800-162 “Guide to Attribute Based Access Control (ABAC) Definition and

Considerations” [24]. This publication provides definitions and considerations for using ABAC

to improve information sharing and design of systems, while maintaining control of that

information. Concepts and terminology for ABAC presented in this document have been

instrumental for design of automated quality assurance for spreadsheets presented in this thesis.

18

4. ABAC4S Protocol

ABAC4S protocol is designed to control unauthorized activities on spreadsheets in multi-

user environments. The core idea of the proposed protocol revolves around spreadsheet

representation as a collection of resources [6]. In modern cloud-based spreadsheets, resources

are building blocks manipulated with a native spreadsheet formula language or custom

computational modules constructed with external programming languages. Spreadsheet

resources and their attributes are bound by ABAC4S rules and allow granular control of

resource states during a spreadsheet’s lifecycle. The ABAC4S protocol specification consists

of six distinct parts [27]:

1. The Service to be provided by the protocol

2. The Assumptions about the environment in which the protocol is executed

3. The Data Model used for protocol implementation

4. The Sequence Diagrams with data flows during protocol execution

5. The Encoding (format) of ABAC4S protocol access rules

6. The Processing Logic of ABAC4S protocol, including algorithm for resolution of

conflicts within access rules and determination of spreadsheet changes between

different spreadsheet states. These rules guard the consistency of data flows and

correctness of Service provided by the ABAC4S protocol.

4.1. ABAC4S Protocol Service Specification

The ABAC4S protocol is defined on the conceptual level of modern cloud-based

spreadsheets and is agnostic form specific commercial implementations of spreadsheets. In

addition, ABAC4S protocol specifications provided in this paper are based on algebraic and

directed graph data structures and data flows suitable for translation to model checking tools

and verification of correctness for protocol rules. ABAC4S protocol for automated quality

assurance of spreadsheets should control evolution of spreadsheet programs according to user’s

access rules and structured criteria defined for spreadsheet resources. As such, ABAC4S

protocol is managing behavioral and structural quality criteria of spreadsheet programs defined

with access rules.

4.2. ABAC4S Protocol Environment

The environment in which the protocol is executed consists of the ABAC4S conceptual

model and four generic user roles typically found in multi-user environments: developer, tester,

19

analyst and manager. The ABAC4S protocol for automated quality assurance of spreadsheets

is not restricted to only 4 specified users and can be easily extended to unlimited number of

user roles depending on specific deployment needs. Four generic user roles are selected to limit

the complexity of the model and prevent state space explosion during model checking. The

ABAC4S protocol definition in this paper focuses on accurate and complete specification of

data flows and ABAC4S protocol processing logic, while implementation for protocol

execution on commercial spreadsheets is left for specific deployment scenarios.

4.3. ABAC4S Protocol Data Model

A data model refers to an abstract representation of data structures that are used to organize

and manage data in the proposed ABAC4S protocol for automated quality assurance of

spreadsheets. First, ABAC4S protocol building blocks have been defined with visual

conceptual models to facilitate communication and understanding of data requirements for

ABAC4s protocol. Class diagrams from Unified Modeling Language (UML) have been used

to define a modern cloud-based spreadsheet conceptual model as extension to spreadsheet

conceptual model introduced by Retschenhofer et al. [48]. UML class diagrams will be used to

define conceptual models of ABAC4S access rules with links to the associated set of

spreadsheet resource attributes. Based on provided visual conceptual models for spreadsheets,

further refinement of proposed conceptual model will be provided with directed graph

representation of spreadsheet resources. This combination of UML and directed graph

representation of spreadsheets is used in later stages of this research to perform formal

verification of proposed ABAC4S protocol and assess protocol correctness with model

checking approach.

4.3.1. Spreadsheet Conceptual Model

Conceptual models of spreadsheet resources and associated attributes are visually presented

in Figure 2. and Figure 4.

20

Figure 2. Conceptual model of spreadsheet resources and associated attributes.

Design considerations in proposed ABAC4S protocol are structured around resources that

constitute modern cloud-powered spreadsheet. Spreadsheet resources are building blocks for

spreadsheet programs and are manipulated by spreadsheet users or change their state during

lifecycle of spreadsheet as result of spreadsheet program execution. Spreadsheet resources and

their attributes are bounded with ABAC4S rules and permissible actions performed by

spreadsheet users. The following provides a description of key spreadsheet resources and

corresponding classes in spreadsheet conceptual model diagrams:

• The class Spreadsheet represents spreadsheet program. This is the root class and container

in the presented metamodel for other spreadsheet resources. Spreadsheet programs that are

instantiated from this class are stored in proprietary file formats on personal computers. The

most popular format used by Microsoft Excel is Microsoft Excel Open XML Format

(XLSX). It's an Extensible Markup Language (XML) file format based on ECMA-376

Office Open XML standard [45]. XLSX file format uses standard ZIP compression to store

data in a more efficient and accessible way, readable on different operating systems and

Spreadsheet

Spreadsheet_Attrs

Add-in

Add-in_Attrs

Worksheet

Worksheet_Attrs

1

1..*

1 0..*

NamedObject

NamedObject_Attrs

1

0..*

VisualObject

VisualObject_Attrs

Table

Table_Attrs

Cell

Cell_Attrs

LabelCell

LabelCell_Attrs

ValueCell

ValueCell_Attrs

InputData

InputData_Attrs

Formula

Formula_Attrs

1

1

1

1

0..*

0..*

1..*

0..*

1 0..*

1

0..*

21

computer architectures. XLSX offers better data integrity, improved compatibility, and a

more structured approach to data storage compared to the older XLS file format.

• The class Worksheet represents a blueprint for instantiating worksheets. Worksheets are a

primary working area and key resource within each spreadsheet represented as a two-

dimensional collection of cells organized into rows and columns. In modern cloud-based

spreadsheets, worksheets are containers for other spreadsheet resources, such as visual

objects, tables and other custom-built resources such as user defined functions or

computational modules constructed with external programming languages. Depending on

spreadsheet user preferences, worksheets can be used as scoping boundaries for custom user

defined functions and named objects.

• The class NamedObject represents various resources in modern spreadsheets that are

controlled by users through Named Manager functionality. This naming convention is used

in Microsoft Excel 365 product, but other cloud-based spreadsheets offer similar

functionality. In modern cloud-based spreadsheets, class NamedObject represent all

spreadsheet resources constructed with either composition of internal spreadsheet functions,

or with external programming languages. With the recent introduction of LAMBDA functions

and collection of supporting functions (MAP, REDUCE, SCAN, MAKEARRAY,

BYROW, BYCOL, ISOMITTED), Microsoft Excel is additionally empowered for

computational tasks previously reserved for plugins or scripting with embedded macro

language [43]. Great demonstration of new Microsoft Excel capabilities and powerful

development strategies with custom user defined functions based on Excel formulas has

been provided by Bartholomew at EuSpRIG conference [44]. Customized user’ spreadsheet

resource created as instance of NamedObject class can be scoped to broader spreadsheet

workbook or limited to the worksheet. Reusable software components built with external

programming languages are tightly integrated into modern spreadsheets, empowering

spreadsheet users to develop models quicker with fewer errors [46]. For example, the new

=PY() function introduced in Microsoft Excel spreadsheet acts as a bridge, letting users

write Python code directly in Excel cells [47]. Python in Excel is compatible with existing

tools and libraries for charting and numerical analysis. Among many exciting new features

that Python in Excel offers to users is the ability to create and dynamically control complex

tabular and visual objects directly from python code. This functionality was previously

available only through Excel predefined toolbar.

22

• The class Add-in represents an external program that extends the functionality of the

spreadsheet with new features and commands. Resources created as instance of Add-in class

are the oldest mechanism available in spreadsheets for building custom extensions.

Microsoft popularized Add-ins in early versions of Excel with proprietary architectures

based on Dynamic Link Library (DLL) and Component Object Model (COM). COM is

specification for creating reusable software components that can interact with each other.

Traditional Add-ins built on COM specifications are bound to client versions of Excel

spreadsheets and must be installed separately. In modern spreadsheets, lambda functions

are essential for the creation of reusable software components, empowering spreadsheet

developers to develop models quicker with fewer errors [46]. Another new feature added to

Excel is native support for Python programming language [47]. Powerful Python

computational engine is embedded in Excel and users can integrate Python language code

with existing formula language at the level of cell. Python in Excel is compatible with

existing tools and libraries for charting and numerical analysis. Among many exciting new

features that Python in Excel offers to users is the ability to create and dynamically control

complex tabular and visual objects directly from python code. This functionality was

previously available only through Excel predefined toolbar.

• The class Table represents Excel named table resources that could be added to the worksheet

through spreadsheet application interface. However, after manual creation of named table,

this spreadsheet resource can be controlled directly from spreadsheet formula language with

structured references. Microsoft introduced structured references as part of named tables

functionality in Excel 2007. These references, which use column names instead of cell

references in formula language, were a key feature of the new named table format.

Structured references are powerful extensions to formula language and allow spreadsheet

users to reference custom tables in their entire code, with improved readability and

maintainability of spreadsheet programs.

• The class VisualObjects represents spreadsheet visual objects that could be added to the

worksheet through spreadsheet application interface. These graphs and charts are visual

representations of worksheet data that help to illustrate trends, pinpoint patterns, and make

comparisons within data. All commercial spreadsheets include countless options for

generating charts and graphs, including bar charts, line charts and other more complex data

visualization techniques. Charts and graphs are powerful spreadsheet tools and help

communicate clearly and efficiently, especially for large and complex data sets.

23

• The class Cell represents key spreadsheet resource and smallest unit of data storage in a

spreadsheet. A cell is a single rectangular area where data is entered and stored, formed by

intersection of a column and a row. In commercial spreadsheets there are two ways for

referencing cells. In A1 Reference Style, cells are referenced using a combination of a

column letter and a row number, such as A1, B1, or D10. Relative cell references change

during copy operation to other cells. For example, if A1 cell reference is copied from

original location to new location with relative distance of 1 column and 1 row to original

cell location, the new cell reference will be B2. Spreadsheet formula language uses special

syntax to control absolute and relative cell references. Dollar sign ($) is used to fix the row

or column, preventing cell reference from changing when copied or filled. For example,

$A1 fixes column A, and A$1 fixes row 1 during copy of filling operation. Absolute cell

reference, immune to changes during copying and filling operations, is achieved with A1

cell reference. There's also an alternative, R1C1 Reference Style, where cells are referenced

by row and column numbers preceded by "R" and "C" respectively, for example, R1C1,

R2C1, or R10C4. Relative cell referencing for R1C1 Reference style is achieved with

numbers in square brackets to indicate the offset from the current cell. For example,

R[1]C[1] refers to the cell 1 rows below and 1 column to the right of the cell containing the

formula. Negative numbers indicate moving up or left, and positive numbers indicate

moving down or right. A1 Style Reference is preferable cell reference style for majority of

spreadsheet users. However, R1C1 Style reference offers several advantages, particularly

when working with relative cell references and formulas that are intended to be copied or

filled. For example, a formula like R[-1]C[-1] (one row above and one column to the left)

will remain the same when copied across multiple rows or columns. This contrasts with A1

Style Reference, where cell references might change based on the new cell's position.

Additional benefits of R1C1 Style Reference can be useful when working with spreadsheet

macros and Visual Basic for Applications (VBA) where cells are manipulated

programmatically. Ranges are rectangular collection of cells defined by the cell reference

of the top-left cell and the cell reference of the bottom-right cell separated by colon. For

example, A1:C2 is a range containing 6 cells in total, with A1 as top-left cell and C2 as

bottom-right cell. Spreadsheets allow 3D referencing to the same cell or range across

multiple worksheets within a single spreadsheet workbook. For example, cells A1 on

worksheets named “Sheet1”, “Sheet2” and “Sheet3” can use a 3D reference, without having

to manually list each worksheet and cell in formula. Let’s say we have the following data

in spreadsheet workbook:

24

Worksheet “Sheet1”: Cell A1 contains value “Banana”

Worksheet “Sheet2”: Cell A1 contains value “Apple”

Worksheet “Sheet3”: Cell A1 contains value “Orange”

To list values from each worksheet cell A1 in first column of worksheet “Sheet4”, we can

use the following 3D reference as parameter to excel function TOCOL():

 =TOCOL(Sheet1:Sheet3!A1)

The TOCOL() function in Excel converts a multi-column array or 3D reference into a single

column as visually presented in Figure 3. It takes an array, and optionally, arguments to

ignore certain values or to scan by column. The function is useful for flattening data

structures and organizing information into a more manageable format.

Figure 3. Example of 3D referencing in Excel Spreadsheet.

Spreadsheets allow cross-worksheet reference within formula or function in one worksheet

that uses data or values from another worksheet within the same workbook. Cross-

worksheet referencing creates dynamic links between cells or ranges across worksheets, so

changes in one worksheet will automatically update in the other. For example, cross-

worksheet reference =Sheet1!A1 would refer to cell A1 on Sheet1 within the current

spreadsheet workbook. As visually represented in metamodel in Figure 2., cells instantiated

from class Cell might be of the type ValueCell or LabelCell. “Labeled cells” refers to cells

that are used for identification of structured data, such as named tables or column headers.

“Value cells” in presented metamodel might be of type Formula or InputData. “Input data

25

cells” generally refers to individual cells in a worksheet that contain the raw data being

analyzed. These cells hold the raw information that spreadsheet programs used for

computation and might be entered either manually by users or populated by automatic

spreadsheet interfaces. The conceptual model for spreadsheet formula is presented in Figure

4.

Figure 4. Spreadsheet formula conceptual model.

• The class Expression represents powerful spreadsheet formula language ability for nesting

formulas. The original design introduced by Retschenhofer et al. has been extended to

include NamedObject as parameters and NamedReference as one possible realization of cell

references [48]. As represented in the provided conceptual model, expressions are

constructed with functions, operators, literals, named objects and references. Expressions

might also be composed of other expressions, thus allowing spreadsheet users to model

complex computational problems.

Formula

Formula_Attrs

Expression

Expression_Attrs

Function

Function_Attrs

1

1

0..1

*

ParentExpression

SubExpression

Operator

Operator_Attrs

Literal

Literal_Attrs

NamedObject

NamedObject_Attrs

Reference

Reference_Attrs

SingleReference

SingleReference_Attrs

RangeReference

RangeReference_Attrs

NamedReference

NamedReference_Attrs

26

4.3.2. ABAC4S Protocol Access Rules

The conceptual model of ABAC4S protocol access rules is visually represented in Figure 5.

Figure 5. ABAC4S protocol access rules for spreadsheets.

• The class AccessRule represents the key entity in ABAC4S protocol access rules. Each

access rule instantiated from AccessRule class is composed of associated spreadsheet

resource(s), subject(s) to which the access rule applies, and environment attributes that

allow dynamic environmental conditions with ABAC4S access rules. For example, with

environment attributes, ABAC4S protocol allows specification of different access rules for

development, testing and production environments of spreadsheet programs. Other

examples of environmental conditions include time, location, threat level, or temperature

[6].

• The class AccessMode represents mode of operations for ABAC4S protocol. Practically,

this means that ABAC4S protocol can be deployed in real use case scenarios as preventive

or detective protocol. In preventive use case implementation, ABAC4S evaluates each user

action and spreadsheet resource change before the action is recorded in spreadsheet

application. As a result of access mode resolution in preventive mode of operation,

1 Access Rule1..*

SpreadsheetResource

SpreadsheetResource_Attrs

AccessMode
1

Subject

Subject_Attrs

Environment

Enviornment_Attrs

1

Access Control

Policy 1

Defines EvaluatesTo

0..* 1..*1..*

*

SubRule

ParentRule

0..1

Preventive

ValueType: Permits | Prohibits

Detective

ValueType: Valid | Non-valid

27

ABAC4S protocol proactively permits or prohibits spreadsheet state changes. In detective

use case implementation, ABAC4S evaluates each user’s action and spreadsheet state

transition after the change has been recorded in spreadsheet. As a result of access mode

resolution in detective mode of operation, ABAC4S protocol can only log and determine

for each resource state transition validity of change according to access rules. These modes

of operations are modeled in Figure 5. with Preventive and Detective classes. In general,

preventive modes of operations are preferable in information systems, however practical

implementation of preventive mode of operations is far more complex than detective mode

of operation.

• The class SpreadsheetResource represents link to associated set of spreadsheet resource

attributes. Simple and consistent naming convention has been utilized during development

of ABAC4S protocol, where set of attributes are represented with suffix _Attrs concatenated

to Class name that represents spreadsheet resource. For example, a set of attributes

associated with class Worksheet is represented in model as Worksheet_Attrs. Depending on

nature and number of modeled spreadsheet resource, corresponding attributes are

represented with enumerated lists or key-value HashMap. For example, attribute type for

InputData is represented with enumerated list [Boolean, Integer, Number, String, Date,

Array]. Attribute name for Worksheet is represented with key-value dictionary

{“Worksheet.name”:“First_Sheet”} [48].

4.3.3. ABAC4S Protocol Algebraic Representation

Spreadsheet stages during lifecycle phases are modelled with finite sequence of state

transitions as follows:

𝑆0
∆𝑆0(𝑀𝑈)
→ 𝑆1

∆𝑆1(𝑀𝑈)
→ 𝑆2

∆𝑆2(𝑀𝑈)
→ , … , 𝑆𝑒. (1)

where 𝑆0 is the initial state of the spreadsheet (“first creation”), 𝑆𝑒 is the final state of

spreadsheet (“end of lifecycle”), ∆𝑆𝑗(𝑀𝑈) are transitions between spreadsheet states caused by

modifications 𝑀 of user 𝑈 on spreadsheet resources 𝑆𝑅.

𝑈 ∈ [𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟, 𝑡𝑒𝑠𝑡𝑒𝑟, 𝑎𝑛𝑎𝑙𝑦𝑠𝑡,𝑚𝑎𝑛𝑎𝑔𝑒𝑟]. (2)

28

Modifications 𝑀 are determined by comparing affected spreadsheet resource at states 𝑆𝑗+1

and 𝑆𝑗. Transitions ∆𝑆𝑗(𝑀𝑈) are modeled as triplets with the following structure:

∆𝑆𝑗(𝑀𝑈) = (𝑈,𝑀, 𝑆𝑅𝑗). (3)

In the proposed ABAC4S protocol vocabulary, access rules are modelled as quadruples

with the following structure:

(𝑈, 𝐴, 𝑆𝑅, 𝐸). (4)

𝐴 is a set of actions that user might perform on spreadsheet resource represented with

following enumerated list:

𝐴 ∈ [𝐶𝑅𝐸𝐴𝑇𝐸, 𝑅𝐸𝐴𝐷,𝑈𝑃𝐷𝐴𝑇𝐸,𝐷𝐸𝐿𝐸𝑇𝐸]. (5)

These actions are usually denoted with the CRUD acronym. The proposed ABAC4S

protocol is not limited to four CRUD actions, and if needed in specific deployment scenarios,

the number of actions could be reduced or extended.

𝑆𝑅 represents a set of spreadsheet resources and corresponding resource attributes on which

user 𝑈 can perform action 𝐴.

𝐸 are dynamic environmental conditions, independent of the users and the spreadsheet

resources that may be used as attributes at decision time to influence an access decision.

4.3.4. Spreadsheet Resources as Direct graph

Direct graph representation of spreadsheet resources effectively defines hierarchical nature

of spreadsheet resources. Each spreadsheet resource is modeled as a node in direct graph

representation of spreadsheets. Edges modeled as directed arrows represents hierarchical “has-

a” relationships between spreadsheet resources. This type of relationship between spreadsheet

resources implies that hierarchically upper (parent) spreadsheet resource, “owns” or “contain”

other hierarchically lower (child) spreadsheet resources. Visually, spreadsheet resource 𝑆𝑅 as

a graph node is presented in Figure 6.

29

Figure 6. Spreadsheet resource graph node.

The following are definitions of important properties for directed graph representation of

spreadsheet resources.

Definition 1 (Single Parent Property):

Each spreadsheet resource represented as a node in direct graph representation of the

spreadsheet resources has one (and only one) parent node.

□

Definition 2 (Root Node):

Spreadsheet node is the root parent node in direct graph representation of spreadsheet

resources, without parent node. All other spreadsheet resources are hierarchically lower nodes

or child nodes related to spreadsheet root parent node.

□

Definition 3 (Single Root Path):

Each spreadsheet resource represented as a node in direct graph representation of the

spreadsheet resources has one (and only one) unique path to spreadsheet root parent node.

□

Visually, single root path property is presented in Figure 7.

30

Figure 7. Single root path property for spreadsheet resources.

Example of spreadsheet representation with directed graph in Figure 7. has two

distinguished paths marked for formula1 and formula2 resources. Path1 is a unique single root

path for formula1 and is determined with the following nodes:

𝑠𝑝𝑟𝑒𝑎𝑑𝑠ℎ𝑒𝑒𝑡 → 𝑤𝑜𝑟𝑘𝑠ℎ𝑒𝑒𝑡1 → 𝑐𝑒𝑙𝑙1 → 𝑓𝑜𝑟𝑚𝑢𝑙𝑎1. (6)

Path2 is a unique single root path for formula2 and is determined with the following nodes:

𝑠𝑝𝑟𝑒𝑎𝑑𝑠ℎ𝑒𝑒𝑡 → 𝑤𝑜𝑟𝑘𝑠ℎ𝑒𝑒𝑡2 → 𝑐𝑒𝑙𝑙3 → 𝑓𝑜𝑟𝑚𝑢𝑙𝑎2. (7)

4.4. ABAC4S Protocol Sequence Diagrams

A sequence diagram, in the context of presented ABAC4S protocol for automated quality

assurance of spreadsheets is a visual representation of the interaction between entities in a

system, focusing on the order and timing of messages exchanged. Specifically, a sequence

diagram provides a visual timeline of events within a system, making it easier to understand the

31

sequence of actions and messages exchanged between protocol entities. Sequence diagrams

used in this thesis are type of interaction diagram within Unified Modeling Language (UML)

specification. As already stipulated in conceptual model of rules, ABAC4S protocol can be

implemented as preventive or detective protocol. In preventive use case implementation,

ABAC4S evaluates each user action and spreadsheet resource change before the action is

recorded in spreadsheet application. Preventive mode of ABAC4S protocol implementation is

presented in Figure 8.

Figure 8. Sequence diagram for preventive mode of ABAC4S protocol implementation.

32

Figure 9. Sequence diagram for detective mode of ABAC4S protocol implementation.

In detective use case implementation, ABAC4S evaluates each user’s action and

spreadsheet state transition after the change has been recorded in spreadsheet. Preventive mode

of ABAC4S protocol implementation is presented in Figure 9. In the above sequence diagrams,

ABAC4S protocol computational logic is presented with “ABAC4S Agent”. The goal is to

demonstrate that ABAC4S computational logic is independent and agnostic to commercial

spreadsheet applications. In practical deployment scenarios for ABAC4S protocol, “ABAC4S

Agent” could be implemented as add-in to commercial spreadsheets (such as Microsoft Excel

or LibreOffice Calc) installed on user’s personal computer or microservice for cloud-based

spreadsheets (such as Microsoft Excel Online or Google Sheets).

4.5. ABAC4S Protocol Access Rules Encoding

As already stipulated in ABAC4S protocol algebraic representation, access rules are

modelled as quadruples (4), where 𝐴 is a set of actions that user might perform on spreadsheet

resource represented with enumerated list usually denoted with CRUD acronym (5). In addition

to controlling user’s action with access rules, ABAC4S protocol is designed to control structural

properties of spreadsheet resources 𝑆𝑅. The following are structural rules defined for

spreadsheet resources.

33

Structural Rule 1: “Dot” notation is used to access specific resource attribute.

• Definition : Resource.attribute

• Example: Spreadsheet.name

Structural Rule 2: Chaining “Dot” notation is used to access specific resource attribute within

hierarchy of spreadsheet resources.

• Definition : Resource_1.Resource_2…Resource_n.attribute

• Example: Spreadsheet1.Worksheet1.Input_Cell1.name

Structural Rule 3: Each spreadsheet resource is uniquely identified and addressed by its name.

Cells are uniquely identified and addressee either by name (assigned with Named Manger

functionality) or by unique address in A1 Reference style or R1C1 reference style. Standard

range notation with “:” operator is used to address ranges.

• Definition : Resource_name_1.Resource_name_1…Resource_name_n.attribute

• Example: Spreadsheet1.Worksheet1.A1.name

Structural Rule 4: Structured table references are used to identify spreadsheet tables and

access whole tables, specific columns or intersection of columns and rows [50]. Complete

definition of structured tables references syntax is provided in Appendix A.

Structural Rule 5: “TYPE” function call for resource attribute determines attribute data type.

• Definition : TYPE(Resource.attribute)

• Example: TYPE(Cell.value)

Structural Rule 6: Equal sign operator “=” evaluates resource attribute to specific value

• Definition : Resource.attribute=”attribute_value”

• Example: Cell.value = “3,14”

Structural Rule 7: Optional values with one selected value out of predefined list of values are

specified with Pipe “|” operator.

• Definition : Resource.attribute=[“Value 1” | “Value 2” | … | “Value n”]

• Example: Cell.value = [”Banana” | ”Apple” | ”Orange”]

34

Structural Rule 8: Predefined data types are Boolean, Integer, Number, String, Date, Tuple,

List, Set, Dictionary, Formula, NmedRange, Error.

• Definition : TYPE(Resource.attribute)=[“Boolean” | “Integer” | “Number” | “String”

| “Date” | “Tuple” | “List” | “Set” | “Dictionary” | “Formula” | “NamedRange” |

“Error”]

• Example: TYPE(Cell.value)=”Boolean”

It is important to note that error types might differentiate significantly between commercial

spreadsheet applications. In the latest version of Microsoft Excel spreadsheet, error types can

be evaluated with built-in excel function ERROR.TYPE(). This function returns a number

corresponding to one of the error values in Microsoft Excel or returns the #N/A error if no error

exists [49]. In typical implementation, ERROR.TYPE() is used in combination with IF()

function to test for an error value and return a text string, such as a message, instead of the error

value. ERROR.TYPE() function is called with following syntax:

= ERROR.TYPE(Error_val)

Where Error_val is required parameter whose identifying number will be determined

according to Table 2. presented below. Although Error_val can be the actual error value, in

typical implementation this will be a reference to a cell containing a formula or formula itself

passed as nested parameter to function.

35

Table 2. Microsoft Excel errors and ERROR.TYPES()returned values.

Error_val ERROR.TYPE returns

#NULL! 1

#DIV/0! 2

#VALUE! 3

#REF! 4

#NAME? 5

#NUM! 6

#N/A 7

#GETTING_DATA 8

Anything else #N/A

Structural Rule 9: For Integer, Number, and Date data types “less than” operator “<” checks

if resource attribute value is less than value specified on right side of operator.

• Definition : Resource.attribute < “Less_than_value”

• Example: Cell.value < ”3,14”

Structural Rule 10: For Integer, Number, and Date data types “greater than” operator “>”

checks if resource attribute value is greater than value specified on right side of operator.

• Definition : Resource.attribute > “Greater_than_value”

• Example: Cell.value > ”3,14”

Structural Rule 11: Logical AND operation in functional form might be used for evaluation

of multiple criteria for identical spreadsheet resource. Multiple criteria should be separated with

comma “,” sign.

• Definition : AND(Criteria1, Criteria2, …, Criteria2)

• Example: AND(Cell.value > “0”, Cell.name=”Sallary”)

Structural Rule 12: Logical OR operation in functional form might be used for evaluation of

multiple criteria for identical spreadsheet resource. Multiple criteria should be separated with

comma “,” sign.

• Definition : OR(Criteria1, Criteria2, …, Criteria2)

• Example: OR(TYPE(Cell.value)=”String”, Cell.name=”Sallary”)

36

Structural Rule 13: Pattern matching for character combinations in strings is supported with

regular expressions. “REGEX” function call with resource attribute passed as parameter checks

for pattern matching. Regular expression patterns are provided on the right side of expressions.

• Definition : REGEX(Resource)=”regex_pattern”

• Example: REGEX(Cell1.value)=”^\d{5}(?:[-\s]\d{4})?$”

In the above example of pattern matching, regex pattern for US zip code is used to check if

Cell1.value contains valid US zip code.

Structural Rule 14: Operations in functional form might be nested and composed with

unlimited complexity and nesting depth. The only reasonable limitation is readability of final

structural rule.

• Definition : [OR | AND]([OR | AND]([OR | AND](Criteria_1, …, Criteria_n)))

• Example: AND(TYPE(Cell.value)= ”String”,

OR(Cell.value=”Banana”, Cell.value=”Apple”))

4.6. ABAC4S Protocol Processing Logic

The Processing Logic of ABAC4S protocol for automated quality assurance of spreadsheets

controls evolution of spreadsheet programs according to ABAC4S protocol access rules and

structured criteria defined for spreadsheet resources. ABAC4S protocol controls two quality

assurance criteria defined with protocol access rules; first behavioral criteria specified with

user’s roles and actions, and second structural properties of spreadsheet programs with set of

structural rules specified on granular level of spreadsheet resources that constitute spreadsheet

program. ABAC4S processing logic is divided into three consecutive processing steps that are

executed for each spreadsheet state transition during spreadsheet lifecycle stages. During the

first step of ABAC4S protocol processing logic, direct graph hierarchical representation of

spreadsheet resources is generated. During the second step, resolution of potential conflicts for

graph representation of spreadsheet resources and defined access rules is determined to ensure

correct ABAC4S processing. During the last and third step of ABAC4S protocol processing

logic, direct graphs representing two consecutive spreadsheet states are compared to determine

transition ∆𝑆𝑗(𝑀𝑈) between spreadsheet states 𝑆𝑗 and 𝑆𝑗+1 during spreadsheet lifecycle. Based

on all identified modifications to affected spreadsheet resources, ABAC4S protocol compares

37

actions and spreadsheet resource modifications with defined access rules and determines

validity of spreadsheet transition between corresponding states. In continuation of this thesis,

comprehensive description for each ABAC4S protocol processing step is defined.

4.6.1. Generating Direct Graphs for Spreadsheet States

During the first step of ABAC4S protocol processing logic, for each spreadsheet lifecycle

state 𝑆𝑗 and 𝑆𝑗+1, direct graph with hierarchical representation of spreadsheet resources is

generated according to defined rules for spreadsheet representation. Specifically, each

generated directed graph must comply with Definition 1 (Single Parent Property), Definition 2

(Root Node) and Definition 3 (Single Root Path) introduced in Chapter 4.3.4 of this thesis.

To demonstrate generation of direct graphs for two spreadsheet states, simple spreadsheet

example will be used.

Figure 10. Example of spreadsheet graph at state 𝑆𝑗

Following spreadsheet resources constitute spreadsheet program “graph.xlsx” at state 𝑆𝑗

represented in Figure 10.:

• Worksheet “Sheet1”: Cell A1 contains value “1”.

• Worksheet “Sheet1”: Cell A2 contains value “2”.

• Worksheet “Sheet1”: Cell A3 contains value “3”.

• Worksheet “Sheet1”: Cell A4 contains formula: =SUM(A1:A3), which evaluates to

value “6”.

38

Direct graph generated from spreadsheet program “graph.xlsx” at state 𝑆𝑗 is visually

represented in Figure 11.

Figure 11. Directed graph representation of spreadsheet at state 𝑆𝑗

After modifications to spreadsheet resources, the spreadsheet state transition to new state

𝑆𝑗+1 is visually represented in Figure 12.

Figure 12. Example of spreadsheet graph at state 𝑆𝑗+1

Following spreadsheet resources constitute spreadsheet program “graph.xlsx” at state 𝑆𝑗+1

represented in Figure 12.:

• Worksheet “Sheet1”: Cell A1 contains value “1”.

• Worksheet “Sheet1”: Cell A2 contains value “2”.

39

• Worksheet “Sheet1”: Cell A3 contains value “3”.

• Worksheet “Sheet1”: Cell A4 contains value “4”.

• Worksheet “Sheet1”: Cell A5 contains formula: =PRODUCT(A1:A4), which

evaluates to value “18”.

Direct graph generated from spreadsheet program “graph.xlsx” at state 𝑆𝑗+1 is visually

represented in Figure 13.

Figure 13. Directed graph representation of spreadsheet at state 𝑆𝑗+1

4.6.2. Conflict Resolution for Access Rules

During the second step, resolution of potential conflicts for graph representation of

spreadsheet resources and defined access rules is determined to ensure correct ABAC4S

processing. ABAC4S protocol access rules are defined as a set of quadruples. There is no

limitation in the number of quadruples created to model specific user role. This results with

great flexibility and granularity for ABAC4S access rules, because each spreadsheet resource

behavioral and structural properties can be tightly controlled during the whole lifecycle. The

negative side of this flexibility are potential conflicts in resolution of effective user roles and

consequently inability of ABAC4S protocol to determine validity of spreadsheet transition

between two states. The following definitions for ABAC4S protocol processing logic are

introduced to resolve potential conflicts detected for user’s access rules.

40

Definition 4 (Priority of Actions):

Actions assigned to users are evaluated in the following order:

𝐷𝐸𝐿𝐸𝑇𝐸 > 𝐶𝑅𝐸𝐴𝑇𝐸 > 𝑈𝑃𝐷𝐴𝑇𝐸 > 𝑅𝐸𝐴𝐷. (8)

□

Definition 5 (Access Rule Inheritance):

All spreadsheet’s resources inherit access rules applicable to their parents. To break chain

of inheritance for spreadsheet resource, its parent should not have explicit access rule assigned

(“Deny All Property” if explicit access rule for spreadsheet resource is not assigned).

□

Definition 6 (Spreadsheet Valid State):

Spreadsheet is in valid state 𝑆𝑗+1, iff Definition 4 (Priority of actions) and Definition 5

(Access Rule Inheritance) are satisfied for all affected spreadsheet resources during spreadsheet

state transition from 𝑆𝑗 to 𝑆𝑗+1.

□

For example, let’s say that user analyst has two access rules assigned to control

spreadsheet program “graph.xlsx” represented in Figure 10.:

(analyst, update, Sheet1, Instance = ”graph.xlsx”)∧

(analyst, delete, Sheet1.A4, Instance = ”graph.xlsx”)

Above access rules specify role for user analyst that allows the user to update worksheet

Sheet1 and delete cell A4 within Sheet1. This combination of access rules creates conflict in

resolution, because actions allowed for cell A4 have higher order than worksheet Sheet1 that is

parent to cell A4. During conflict resolution, all spreadsheet resources inherit actions from their

parent (Definition 5 for Access Rule Inheritance) and always actions with higher priority are

enforced (Definition 4 for Priority of Actions). Important to note is that Definition 1 (Single

Parent Property) and Definition 3 (Single Root Path) guarantee that for each spreadsheet

program represented as hierarchical directed graph of spreadsheet resources only one path from

each spreadsheet resource to root node exists. For simple spreadsheet program “graph.xlsx”

root paths for all spreadsheet resources are following:

41

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 → 𝐴4 → 𝑆𝑈𝑀(𝐴1: 𝐴3). (9)

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 → 𝐴4. (10)

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 → 𝐴3. (11)

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 → 𝐴2. (12)

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 → 𝐴1. (13)

𝑔𝑟𝑎𝑝ℎ → 𝑆ℎ𝑒𝑒𝑡1 (14)

Intuitively, conflict resolution is easier to understand if we look first what action are allowed

for “Parent” resource, and naturally with inheritance applied the same action should be applied

to its “children”. In the above practical example, conflict resolution algorithm will enforce

actions allowed on Sheet1 (update) to cell A5 and will forbid deletion of cell A4 within Sheet1

worksheet for user analyst.

Based on introduced definitions for resolution of conflict detected within specified access

rules and given hierarchical graph representation of resources at spreadsheet state 𝑆𝑗, following

algorithm ResolveConflict is defined in following Table 3.

Table 3. Algorithm ResolveConfig

Algorithm 1 ResolveConflict(DG: SpreadsheetGraph, AR: AccessRules)

1: DG: EDG ← SpreadsheetGraph

2: ForEach Node in EDG:

3: ForEach Rule in AccessRules:

4: If Node[Name] == Rule[SpreadsheetResource]

5: Node[Action] ← Rule[Action]

6: ForEach Node in EDG:

7: If Node[Action] <> Predecessor(Node[Action])

8: Node[Action] ← Predecessor(Node[Action])

9: return EDG

Algorithm ResolveConflict in above pseudo code resembles elements of syntax

utilized in Python programming language [53] and NetworkX graph processing library [54]. It

is presented as a function that takes generated SpreadsheetGraph and AccessRules as

parameters. Algorithm is structured around two traversals through EDG object (short for

42

Effective Direct Graph) instantiated at the beginning from passed SpreadsheetGraph

object of type DG (short for Directed Graph). Within nested loop of the first pass through graph

EDG, for matched graph node and spreadsheet resource in access rule, action attribute of the

node is set to action attribute of matching access rule. During the second pass through graph

EDG, action attribute of each node is compared with action attribute of its predecessor node. In

case of differences identified, action attribute of the node is set to action attribute of its

predecessor node. The function Predecessor() can be simply determined due to the

Definition 1 for Single Parent Property of the graph representation for spreadsheet resources.

In case multiple access rules tuples are passed as parameter, the last tuple determined during

iteration through collection of all access rules with matching spreadsheet resource attribute will

be used to assign action attribute to generated EDG graph. This is intentional behavior as

multiple access rules for the same spreadsheet resource and the same user creates contradiction.

In case such cases are identified during processing access rules, only the last definition is

processed as valid and relevant while all others are ignored. As a result of algorithm processing

generated EDG graph with resolved potential conflicts in access rules is returned. Action

attributes for each node in returned EDG graph contain effective access rules determined.,

without potential conflicts in resolution.

4.6.3. Determination of Changes Between Two Spreadsheet States

During the last and third step of ABAC4S protocol processing logic, direct graphs

representing two consecutive spreadsheet states are compared to determine transition ∆𝑆𝑗(𝑀𝑈)

between two spreadsheet lifecycle states. Transition ∆𝑆𝑗(𝑀𝑈) between spreadsheet states 𝑆𝑗

and 𝑆𝑗+1 is defined as union of all modifications 𝑀 performed by user 𝑈 on affected spreadsheet

resources. Based on all identified modifications to affected spreadsheet resources, ABAC4S

protocol evaluates transition ∆𝑆𝑗(𝑀𝑈) and determines its validity by comparing performed

spreadsheet resources modifications with defined ABAC4S protocol access rules.

𝐴𝐵𝐴𝐶4𝑆(∆𝑆𝑗(𝑀𝑈), 𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑢𝑙𝑒𝑠) = {

𝑃𝑒𝑟𝑚𝑖𝑡𝑒𝑑 | 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑒𝑑; (𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒)

𝑉𝑎𝑙𝑖𝑑 | 𝐼𝑛𝑣𝑎𝑙𝑖𝑑; (𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒)

 (15)

In preventive implementation, ABAC4S protocol evaluates transition ∆𝑆𝑗(𝑀𝑈) and user’s

access rules before the modifications are submitted to spreadsheet application and determines

43

if actions are permitted or prohibited. In detective implementation, ABAC4S protocol evaluates

transition ∆𝑆𝑗(𝑀𝑈) and user’s access rules after the change(s) have been recorded in

spreadsheet applications and determines if performed actions are valid or invalid.

With spreadsheet resources represented as directed graphs, determination of transition

∆𝑆𝑗(𝑀𝑈) between two spreadsheet lifecycle stages becomes a challenge. This evaluation

between two graphs is based on matching and comparing vertices and edges of the two involved

graphs. The graph matching methods can be divided into two broad categories: exact graph

matching and error-tolerant graph matching. Exact graph matching addresses the problem of

detecting identical (sub)structures of two graphs 𝑔1 and 𝑔2 and their corresponding attributes

[55]. In the context of ABAC4S protocol transition determination between two spreadsheets

states, only exact graph matching algorithms are evaluated. Error-tolerant graph matching

algorithms for spreadsheet state transitions are not evaluated in this research, as this would

result in unpredictable determination of modifications performed in spreadsheets and

consequently undesired performance of ABAC4S protocol. In the following, general attributed

graph definition is provided [56].

Definition 7 (Attributed Graph):

An attributed graph (𝐴𝐺) is represented by quadruple 𝐴𝐺 = (𝑉, 𝐸, 𝜇, 𝜔), such that:

• 𝑉 is a set of vertices (nodes).

• 𝐸 is a set of edges such as 𝐸 ⊆ 𝑉 × 𝑉.

• 𝜇: 𝐿 → 𝐿𝑉 is a vertex labeling function which associates label 𝑙𝑉 to vertex 𝑣𝑖.

• 𝜔:𝐸 → 𝐿𝐸 is and edge labeling function which associates label 𝑙𝐸 to edge 𝑒𝑖.

• 𝐿𝑉 and 𝐿𝐸 are vertex and edge attributes sets, respectively. These attributes can be

given by a set of integers 𝐿 = {1,2,3}, a vector space 𝐿 = ℝ𝑁 and/or a finite set of

symbolic attributes 𝐿 = {𝑥, 𝑦, 𝑧}, which can differ in their dimensions.

□

Definition 7 for attributed graph supports all requirements for direct graph representation

of spreadsheet resources. For example, node attributes, such as Name, Action or Value

associated with each node in spreadsheet graph representation can be handled with symbolic

attributes set 𝐿 = {𝑁𝑎𝑚𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛,… , 𝑉𝑎𝑙𝑢𝑒, }, with dimensions suitable for each node.

Graph Edit Distance (GED) is a graph matching method used in graph theory to quantify

the similarity or dissimilarity between two graphs. Analogous to string edit distance (like

Levensthein string edit distance [57]), GED measures the minimum "cost" of transforming

44

graph 𝑔1 into graph 𝑔2 through a sequence of elementary graph edit operations on graph 𝑔1.

The allowed operations are inserting, deleting and/or substituting vertices and their

corresponding edges. In the following, GED definition is provided [56].

Definition 8 (Graph Edit Distance):

Let 𝑔1 = (𝑉1, 𝐸1, 𝜇1, 𝜔1) and 𝑔2 = (𝑉2, 𝐸2, 𝜇2, 𝜔2) be two graphs. The graph edit distance

(GED) between 𝑔1 and 𝑔2 is defined as:

𝐺𝐸𝐷(𝑔1, 𝑔2) = 𝑚𝑖𝑛
𝑒1,…,𝑒𝑘∈𝛾(𝑔1,𝑔2)

∑ 𝑐(𝑒𝑖)
𝑘
𝑖=1 (16)

such that:

• 𝑐 denotes the cost function measuring the strength 𝑐(𝑒𝑖) of an edit operation 𝑒𝑖.

• 𝛾(𝑔1, 𝑔2) denotes the set of edit paths transforming 𝑔1 into 𝑔2.

□

The "edit operations" are atomic changes applied to the graph. Each operation is assigned a

specific cost function 𝑐(𝑒𝑖). Cost function 𝑐(𝑒𝑖) can be uniform or weighted differently based

on the specific application of GED algorithm. The "cost" of an edit path (sequence of 𝑘

operations) ∑ 𝑐(𝑒𝑖)
𝑘
𝑖=1 is the sum of the costs of all individual operations within that path. The

GED is then the minimum cost among all possible edit paths that transform graph 𝑔1 into graph

𝑔2.

Common elementary edit operations include:

• Vertex Insertion (∅ → 𝒗) : Adding a new vertex (node) to the graph.

• Vertex Deletion (𝒖 → ∅) : Removing an existing vertex (node) from the graph.

• Vertex Substitution (𝒖 → 𝒗): Changing the label or attributes of an existing vertex

(node). This can also be interpreted as deleting a vertex (node) and inserting a new one

with different attributes.

• Edge Insertion(∅ → (𝒖, 𝒗)): Adding a new edge between two existing vertices.

• Edge Deletion ((𝒖, 𝒗) → ∅): Removing an existing edge.

• Edge Substitution ((𝒖, 𝒗) → (𝒖′, 𝒗′)): Changing the label or attributes of an existing

edge.

45

Currently, the most efficient implementation of GED method is Depth-First Graph Edit

Distance (DF-GED) algorithm [56]. In comparison with other well-known Astar GED

Algorithm (A*GED) that is considered as a foundation work for solving GED [58], with DF-

GED algorithm memory consumption is not exhausted.

ABAC4S protocol for automated quality assurance of spreadsheets utilizes GED method

for determination of ∆𝑆𝑗(𝑀𝑈) during spreadsheet state transition from 𝑆𝑗 to 𝑆𝑗+1. Mapping

between GED elementary operations and ABAC4S protocol action is provided in Table 4.

46

Table 4. Mapping between GED operations and ABAC4S actions

GED elementary operation ABAC4S protocol action

Vertex Insertion (∅ → 𝑣) CREATE action. For example, the worksheet

Dashboard is created in spreadsheet.

Vertex Deletion (𝑢 → ∅) DELETE action. For example, the worksheet

Dashboard is deleted from spreadsheet.

Vertex Substitution (𝑢 → 𝑣) UPDATE action. For example, the worksheet

Dashboard is renamed to Report.

Edge Insertion(∅ → (𝑢, 𝑣)) CREATE action to add new spreadsheet resource

within hierarchy of other spreadsheet resources.

This operation creates hierarchical “has-a”

relationships between spreadsheet resources. For

example, a cell A1 is inserted to the worksheet

Dashboard.

Edge Deletion ((𝑢, 𝑣) → ∅) DELETE hierarchical relationship between

spreadsheet resources. It is important to note that in

the context of ABAC4S protocol, DELETE action

for node (vertex) representing spreadsheet

resource, automatically performs DELETE action

for edge representing “has-a” relationship from its

parent. For example, deletion of the worksheet

Dashboard, removes spreadsheet resource

Dashboard (node deletion) and its link to parent

spreadsheet resource (edge deletion).

Edge Substitution ((𝑢, 𝑣) → (𝑢′, 𝑣′)) UPDATE action to hierarchical relationship

between spreadsheet resources. For example, the

formula in cell A1 in worksheet Dashboard is

moved from cell A1 in worksheet Dashboard to cell

A1 in worksheet Report.

To demonstrate determination of ∆𝑆𝑗(𝑀𝑈) during spreadsheet state transitions,

spreadsheets represented in Figure 11. and Figure 13. will be analyzed with the GED method.

47

Spreadsheet resources that are affected as part of spreadsheet state transition are highlighted

with light blue color in Figure 14.

Figure 14. Visualized transition between two graphs

Mapping between GED elementary operations and ABAC4S protocol action for this

example is provided in Table 5.

48

Table 5. Example of mapping between GED and ABAC4S actions

GED elementary operation ABAC4S protocol action

Vertex Substitution (𝑆ℎ𝑒𝑒𝑡1. 𝐴4. 𝑉𝑎𝑙𝑢𝑒 =

"=SUM(A1:A3)" → 𝑆ℎ𝑒𝑒𝑡1. 𝐴4. 𝑉𝑎𝑙𝑢𝑒 =

"4")

UPDATE action. Cell A4 in worksheet

Sheet1 is updated from value

„=SUM(A1:A3) to new value „4“

Vertex Insertion

(∅ → 𝑆ℎ𝑒𝑒𝑡1. 𝐶𝑒𝑙𝑙. 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = "𝐴5")

CREATE action. Cell A5 in worksheet

Sheet1 is created.

Edge Insertion (∅ → (𝑆ℎ𝑒𝑒𝑡1, 𝐴5)) CREATE action. Worksheet Sheet1 “has-a”

new cell A5 (i.e., a cell A5 is inserted to the

worksheet Sheet1).

Vertex Insertion

(∅ → 𝐹𝑜𝑟𝑚𝑢𝑙𝑎. 𝑉𝑎𝑙𝑢𝑒

= "=PRODUCT(A1:A4)")

CREATE action. New formula is created

with value „=PRODUCT(A1:A4)“.

Edge Insertion (∅ →

(𝑆ℎ𝑒𝑒𝑡1. 𝐴5, 𝐹𝑜𝑟𝑚𝑢𝑙𝑎. 𝑉𝑎𝑙𝑢𝑒 =

"=PRODUCT(A1:A4)"))

CREATE action. Cell A5 within

worksheet Sheet1 “has-a” formula new

with value „=PRODUCT(A1:A4)“.

Under the assumption that cost for individual GED edit operation is 1 in the above example,

the minimum total cost of the spreadsheet transition determined by GED algorithm is 5.

49

5. Model Checking

Model checking is a model-based verification procedure designed to automatically verify

properties of finite state systems [26], [28]. The core principle behind a model checking

procedure is exhaustive exploration of states to verify whether a given system model satisfies

certain properties.

Transition state machines are used in model checking to represent the behavior of the

system. A common method for representing transition state machines are Kripke structures. A

Kripke structure 𝑀 is represented as an ordered sequence of four objects:

𝑀 = (𝑆, 𝐼, 𝑅, 𝐿). (17)

𝑆: finite set of states

𝐼: set of initial states 𝐼 ⊆ 𝑆

𝑅: transition relation 𝑅 ⊆ 𝑆 × 𝑆

𝐿: interpretation function 𝐿: 𝑆 → 2𝐴𝑃

For each state 𝑠 ⊆ 𝑆 there is a possible successor state 𝑠′ ⊆ 𝑆 specified with transition

relation 𝑅. The interpretation function 𝐿 labels each state with Atomic Propositions (𝐴𝑃) which

are Boolean variables and the evaluations of expressions in that state [26]. A finite path 𝜋 from

some state 𝑠 𝜖 𝑆 is a sequence of states 𝜋 = 𝑠0, 𝑠1, … , 𝑠𝑛 such that 𝑠0 = 𝑠 and 𝑅(𝑠𝑖, 𝑠𝑖+1) holds

for all 0 ≤ 𝑖 < 𝑛 [26].

Emerson and Clarke introduced model checking [29] and Computational Tree Logic (CTL)

as a combination of linear temporal logic and branching-time logic [30]. In model checking,

temporal logic is used to express system specifications (properties) denoted as 𝜙. CTL

combines path quantifiers and temporal operators to describe events associated with single

computation path.

CTL path quantifiers are as follows:

• 𝑨 – for All paths from a certain state on

• 𝑬 – there Exists at least one single path from a certain state

CTL temporal operators are as follows:

• 𝑿 𝜙 – 𝜙 holds neXt time

• 𝑭 𝜙 – 𝜙 holds sometime in the Future

• 𝑮 𝜙 – 𝜙 holds Globally in the future

50

• 𝑝 𝑼 𝜙 – 𝜙 holds Until 𝜙 holds

CTL allows modeling complex behavior of the systems, where temporal operators must

always be preceded by a path quantifier. Figure 15. visually represents the meaning of CTL

path and temporal operators (adapted from [31]).

Finally p Globally p neXt p p Until q

(a) AF p

(b) AG p (c) AX p (d) A p U q

Finally p Globally p neXt p p Until q

(e) EF p (f) EG p (g) EX p (h) E p U q

Figure 15. CTL path and temporal operators.

In practical model checking applications, system model 𝑀 is described semantically with a

Kripke structure and the specifications (properties) are described with formulae 𝜙 in the

applicable form of temporal logic. The decision procedure conducted by a model checker tool

decides whether M ⊨ ϕ. Operator ⊨ meaning is “specification 𝜙 is satisfied by structure 𝑀“.

51

6. Model Checking the ABAC4S Protocol

Model checking of the proposed ABAC4S protocol for spreadsheets has been performed

with the NuSMV symbolic model checker [25]. Original SMV model checking tool has been

developed at the Carnegie Mellon University [32]. NuSMV is a modern variant of original SMV

symbolic model checker with compatible SMV language syntax and advanced architecture that

allows textual construction of hierarchical models and verification of very large number of

states [33].

The system model is a transition system with a set of states and transition relations that

specifies the behavior of the system. In SMV language, a system is defined as a module,

beginning with the keyword MODULE. The module consists of an encapsulated collection of

declarations (such as VAR, INIT, ASSIGN, etc.) that depend on the nature of the analyzed

problem and specific parameters. A module’s state variables declaration begins with the

keyword VAR. In general, model checker tools are limited to only few data types and the SMV

language allows for Boolean values, enumeration of constants, or other modules for

constructing hierarchical models. The set of initial states can be specified with simple logical

statements or conjunctions of equations associated with the initial state of the system. The

transition relation of a module starts with the keyword ASSIGN and may be limited to single

statement or complex set of equations. An assignment statement is structured as the next step

evaluation, where the right-hand side allows the construction of complex expressions built with

Boolean operators, integer arithmetic and case constructs with conditions.

The main challenge during the development of NuSMV model with the SMV language has

been the abstraction of the provided spreadsheet conceptual model with suitable SMV module.

The hierarchy of created SMV modules follows the natural hierarchy of spreadsheet resources

defined in the spreadsheet conceptual model and presented visually in Figure 16.

52

Figure 16. Hierarchy of spreadsheet resources as SMV language modules.

All possible access role combinations and defined CRUD user actions have been explored

during research presented in this thesis. In such a scenario, correct protocol behavior should

detect and resolve potential conflicts during the consecutive model state. Below is the

hierarchical model of spreadsheet resources specified in SMV language.

MODULE spreadsheet_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

add_in:add_in_t();

named_object:named_object_t();

worksheet:worksheet_t();

MODULE add_in_t()

VAR

role:{developer,tester,analyst,manager};

53

a:{create,read,update,delete};

MODULE named_object_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE worksheet_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

table:table_t();

cell:cell_t();

MODULE table_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE cell_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

formula:formula_t();

MODULE formula_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE main

VAR

spreadsheet:spreadsheet_t();

54

As listed in the above specifications, capability of the SMV language to construct

hierarchical modules that correspond to the natural hierarchy of spreadsheet resources have

been utilized in developed SMV modules. The above modules represent all possible state

transitions ∆𝑆𝑗(𝑀𝑈) for each spreadsheet resource, assigned users and CRUD actions. To

prevent state space explosion, each spreadsheet resource has been abstracted and simplified to

a bare minimum, without loss for ABAC4S protocol correctness. In case more complex

representation is required with additional two attributes on module spreadsheet_t(), they

can be added with an enumerated list of constants. Next case assignment for added attributes in

SMV code specification are sharing the same structure with original simplified model

specification.

MODULE spreadsheet_t()

VAR

attributes:{spreadsheet_attribute1,spreadsheet_attribute2};

role:{developer,tester,manager};

a:{create,read,update,delete};

add_in:add_in_t();

named_object:named_object_t();

worksheet:worksheet_t();

Transitions to new states are modeled in SMV with next-case statements within the

ASSIGN language construct. ABAC4S protocol rules for priority of actions and access rule

inheritance are specified with a complex conjunction statement from relevant spreadsheet

resource properties. As visually represented in Figure 16., there are six conjunction statements

(𝜙𝑠𝑛, 𝜙𝑠𝑤, 𝜙𝑠𝑎 , 𝜙𝑤𝑡 , 𝜙𝑤𝑐 , 𝜙𝑐𝑓) that correspond with the hierarchical representation of

spreadsheet resources. In order to correctly specify both protocol rules for priority of actions

and access rule inheritance, the correct transition to the next state for the hierarchically lowest

spreadsheet resource (formula) should be evaluated as a composition of all statements on the

path to the root spreadsheet resource (𝜙𝑐𝑓 , 𝜙𝑤𝑐 , 𝜙𝑠𝑤). Fragment of SMV code for 𝜙𝑠𝑤 next-

case conjunction statement that specifies logic for priority of actions and access inheritance

protocol rules is listed below. The complete SMV source code for ABAC4S protocol

specification is provided in Appendix B. of this thesis and author’s GitHub repository [34].

55

next(spreadsheet.worksheet.a) :=

case

spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a in \

update,create,delete}): read;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=update) & (spreadsheet.worksheet.a in \

read,create,delete}): update;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=delete) & (spreadsheet.worksheet.a in \

read,create,update}): delete;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=create) & (spreadsheet.worksheet.a in \

read,update,delete}): create;

TRUE : spreadsheet.worksheet.a;

esac;

After finalization of model construction and formal specification of the spreadsheet

conceptual model and ABAC4S protocol rules, model checking has been conducted with the

NuSMV model checker. NuSMV model checker has been utilized in interactive mode with

support of NuSMV built-in shell for execution of CTL temporal logic property checks.

CTL temporal logic specification with the following structure has been used to verify

correctness of protocol rules for priority of actions and access inheritance:

𝐴𝐺 (𝑝 → 𝐴𝐹 𝑞). (18)

 The CTL temporal logic specification above should be interpreted as “for all execution

paths globally, when condition 𝑝 occurs it is always followed by condition 𝑞”. If we apply the

above generic CTL specification i.e. for the table spreadsheet resource, the specific CTL syntax

is as follows:

56

check_ctlspec -p "AG \

((spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role= \

spreadsheet.worksheet.table.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \

(spreadsheet.worksheet.table.a in {update,create,delete}) \

-> AF spreadsheet.worksheet.table.a=read)"

As a result of the above CTL temporal logic specification check, the NuSMV model checker

confirms that the above specification is satisfied by given model:

NuSMV >

-- specification AG (((((spreadsheet.role =

spreadsheet.worksheet.role & spreadsheet.worksheet.role =

spreadsheet.worksheet.table.role) & spreadsheet.a = read) &

spreadsheet.worksheet.a = read) &

spreadsheet.worksheet.table.a in (update union create) union

delete) -> AF spreadsheet.worksheet.table.a = read) is true

NuSMV >

NuSMV model checker evaluates the above CTL specification to true, thus formally

verifying correct conflict resolution and correct behavior of two protocol rules in case of a table

spreadsheet resource. Appropriate CTL specifications for other spreadsheet resources follow

the same generic structure, however conjunction statements are growing in complexity for

hierarchically lower spreadsheet resources due to longer evaluation path to the root spreadsheet

resource.

57

7. Spreadsheet Quality Assurance

In recent years, researchers identified the need to relate types and occurrences of

spreadsheet errors with the quality of the spreadsheets. Intuitively, a higher incidence of

spreadsheet errors suggests that the overall quality of spreadsheet is low. According to the

International Organization for Standardization (ISO), Quality Assurance (QA) is a systematic

process that provides confidence that a product, service, or process meets quality requirements.

QA plays an instrumental role in fostering a culture of constant, ongoing improvement. QA

involves planned and systematic actions to achieve this confidence, often implemented within

a quality management system. The primary aim of QA is to reduce the risk of defects – and

importantly, to address faults as early as possible in the value chain [59]. In the context of

spreadsheets QA, this means putting in place both technical and managerial processes and

controls to ensure that quality attributes are fulfilled during whole lifecycle of spreadsheets.

7.1. Spreadsheet Quality Model

While early spreadsheet use was often informal, the growing reliance on them for critical

decision-making process within enterprise triggered significant evolution in spreadsheet quality

assurance practices. In one of the first attempts to formalize quality assurance principles,

O’Beirne presented an overview of information quality and data quality within the context of

spreadsheets [13]. The author presented a comprehensive list of information quality attributes

in the context of spreadsheet programs. As part of the research conducted, O’Beirne presented

practical checks and control procedures to increase the quality of spreadsheet programs.

Further refinement in spreadsheet quality research provided a set of domain specific

metrics, used to measure concrete spreadsheet characteristic [14]. Based on widely accepted

ISO/IEC 9126 international standard for software product quality [15], Peixoto developed a

model of quality for spreadsheets, defining all the features that are important on a spreadsheet

and how the quality of that feature can be quantified [51]. The author provided a comprehensive

analysis of ISO/IEC 9126 standard and mapped relevant quality attributes to spreadsheets.

Spreadsheet quality model is visually presented in Figure 17. [51].

58

Figure 17. Spreadsheet quality model

In continuation of the research presented in this thesis, each of the characteristic defined in

spreadsheet quality model is discussed in the context of novel ABAC4S protocol for automated

quality assurance of spreadsheets.

7.1.1. Functionality

Functionality is the capacity of the spreadsheet to satisfy the user’s needs, either implied or

stated. It is divided into the following sub-categories:

• Suitability: Is the quality of having the properties that are right for a specific purpose.

o Number of incongruences.

o Number of references to blank cells in formulas.

• Accuracy: Is the faithful measurement or representation of the true, correctness.

o Number of output cells with errors or invalid content.

• Interoperability: Is the ability of two or more spreadsheet resources to exchange

information and to use the information that has been exchanged.

o Data exchanged between worksheets.

o Quantity of rightful formulas.

o Total number of cells with references.

• Security: ensure confidentiality and integrity of spreadsheet programs and data.

o Protection of raw data in cells.

o Protection of data structures and data types.

59

o Use of data validation constraints.

o Ensure confidentiality and restricted access to users.

ABAC4S protocol can effectively control suitability, accuracy, interoperability and security

of spreadsheet programs. With granular composition of ABAC4S access rules, structural

characteristics for each spreadsheet resource can be controlled to prevent dissonances between

initial user’s expectations and actual solution developed, prevent references to empty formulas,

enforce validation through access rules allowable types and data contained in cells. ABAC4S

protocol brings additional controls to ensure confidentiality and integrity of spreadsheet

programs and data that are not currently available in commercial spreadsheet applications. For

example, password locks on workbooks or worksheets can enforce only discretionary access

control where spreadsheet owners can control basic access rights to users. With granular

implementation of access rights for different users, ABAC4S can enforce complex

authorizations for spreadsheet programs required in multi-user environments.

7.1.2. Reliability

Reliability is the capacity to maintain its level of performance under stated conditions

during the whole lifecycle of spreadsheet program. It is divided into the following sub-

categories:

• Maturity: The state of quality of being fully developed and up to date with the latest

user’s requirements.

o Number of empty labeled rows and columns.

o Number of orphan worksheets, cells, formulas and other spreadsheet resources

not used as part of spreadsheet calculations.

• Fault Tolerant: Quality characteristics to continue operating properly in the event of one

or more faults within spreadsheet component.

o Overall complexity and number of cells and other spreadsheet resources used to

perform calculation.

o Number of complex formulas.

o Number of complex user-defined functions and other custom components.

ABAC4S protocol can effectively control maturity and fault tolerance of spreadsheet

programs. Mature design and layout of spreadsheet resources within spreadsheets, complexity

60

of formula and user defined functions can be tightly controlled with ABAC4S access rules

structural characteristics. In addition, behavioral aspects of ABAC4S access rules enables

enforcement of spreadsheet development standards within multi-user environments and proper

segregations of duties between developers, data inputters and other spreadsheet users.

Complexity of externally built spreadsheet modules can be controlled with ABAC4S access

rules through validation of input parameters and returned results.

7.1.3. Usability

Usability is the property of the spreadsheet to be understood by users, enabling seamless

user experience. Usability is characterized by consistency of spreadsheet program, accessibility,

and overall user’s satisfaction. It is divided into the following sub-categories:

• Understandability: Spreadsheet property to be understood by users.

o Intuitive colors, layout and structure of spreadsheet resources utilized by users

during interaction with spreadsheets.

o Separation between input, computation and output.

o Total number of spreadsheet resources utilized for user’s interaction.

• Learnability: Spreadsheet property to enable fast and fluent adoption of spreadsheet

programs for new users.

o Total number of spreadsheet resources used for interaction with users.

o Color coding and layout style for spreadsheet resources used for interaction with

users.

o The amount and structure of the data flows between worksheets and other

spreadsheet resources.

• Operability: Spreadsheet quality property driving positive user experience while

minimizing the number of users actions and overall user’s fatigue.

o Use of effective data validation and drop-down lists.

o Controlled size and complexity of validation lists.

o Separation between input, computation and output worksheets and associated

computational resources.

o Natural flow of information and actions from up to down and from left to right

during user's interaction with spreadsheets.

• Attractiveness: Spreadsheet visual and functional attractiveness that enables positive

user experience.

61

o Visual layout of input fields and output results.

o Attractive color coding.

o Overall spreadsheet design compliant with organizational development

standards.

ABAC4S protocol can effectively control understandability, learnability, operability and

attractiveness of spreadsheet programs. This can be achieved in a fully automated way, once

proper access rules to support the above quality characteristics are developed. For example,

once the visual layout for input worksheets and cells is codified in ABAC4S access rules, they

can be used as templates and ensure that organizational visual standards are consistently

deployed to all spreadsheet programs. Flexibility and granularity of ABAC4S access rules can

effectively support variety of visual standards, layouts and color coding for spreadsheet cells

and other visual elements used in spreadsheet programs.

7.1.4. Efficiency

Efficiency property of spreadsheets relates to the amount of spreadsheet resources utilized

to achieve desired goal. It is divided into the following sub-categories:

• Time Behavior: Overall duration of time required to complete task modelled with

spreadsheet program.

o The number and complexity of formulas and other spreadsheet resources

required for complex calculations.

o Number of repetitive actions that are causing time inefficiencies.

• Resource Utilization: Overall resource utilization (processing power, memory

consumption, slow interfaces to other systems) required to complete task modelled with

spreadsheet program.

o Number and complexity of spreadsheet resources that are increasing processor

and memory consumption.

o Ineffective data interfaces to other systems.

ABAC4S protocol can effectively control time behavior and resources utilization of

spreadsheet programs. For example, with environment attribute specified in ABAC4S access

rules, characteristics of spreadsheet execution environment for cloud-based spreadsheets can

be specified. Characteristics and modularity of spreadsheet resources can be enforced with

62

access rules to ensure that desired resource utilization and time behavior of spreadsheet program

is achieved and maintained during the whole spreadsheet lifecycle. Type of input parameters

for user defined functions as well as other computational modules can be controlled with access

rules to prevent wrong data types at the input. Size and structure of input parameters can also

be controlled with ABAC4S protocol access rules to prevent uncontrolled resource utilization.

7.1.5. Maintainability

Maintainability is the property of spreadsheets to expand functionality or correct errors. It

is divided into the following sub-categories:

• Analyzability: Characteristics to be analyzed and rich conclusions within the shortest

possible period.

o Overall number and complexity of spreadsheet resources utilized to develop

spreadsheet programs.

o Self-description of spreadsheet program through comments and structured

naming convention.

o Use of named ranges and named objects with intuitive names instead of cryptic

names and cell references.

• Changeability: Time and resources required to change spreadsheet program.

o Overall number and complexity of spreadsheet resources utilized to develop

spreadsheet programs.

o Modularity and granularity of spreadsheet resources utilized to develop

spreadsheet programs.

o Clarity of interfaces, parameters and returned results for computational

spreadsheet resources.

• Stability: Frequency and resources required to maintain, fix and patch spreadsheet

programs to sustain desired functionality.

o Overall number and complexity of spreadsheet resources utilized to develop

spreadsheet programs.

o Number and complexity of data transformations.

o Assumptions and exception management during computation and data

transformations.

• Testability: Time and resources required to test spreadsheet program.

63

o Overall number and complexity of spreadsheet resources utilized to develop

spreadsheet programs.

o Modularity and granularity of spreadsheet resources utilized to develop

spreadsheet programs.

o Clarity of interfaces, parameters and returned results for computational

spreadsheet resources.

o Proper data transformations and type inferences.

ABAC4S protocol can effectively control analyzability, changeability, stability and

testability quality characteristics of spreadsheet programs. With access rules structural

characteristics for each spreadsheet resource overall complexity can be controlled with details

for input parameters and output results of each computational module. For example, if

modularity characteristic requires that each user defined function accepts only one input

parameter this can be easily achieved with access rules. This will prevent the creation of large

and bulky user defined functions with multiple input parameters and enforce usage of smaller

user defined functions that perform simple and testable computation. Desired result of

computation and better information flow can be achieved with proper composition of smaller

user defined functions. Consequently, this good development practice enforced through

ABAC4S access rule will increase overall analyzability, changeability, stability and testability

of spreadsheet program.

7.1.6. Portability

Portability is the quality characteristic of spreadsheet programs to run effectively within

different spreadsheet execution environments. It is divided into the following sub-categories:

• Adaptability: To what extent can the spreadsheet program adapt to environmental

change.

o The number and complexity of unique spreadsheet resources used depends on

certain versions of spreadsheet application and/or programming language.

o Nonstandard data formats used.

ABAC4S protocol can effectively control the adaptability of spreadsheet programs. Key

design requirements for ABAC4S protocol are independence from commercial spreadsheet

application and closed vendor data exchange and data storage formats. ABAC4S protocol

64

access rules are defined in an open and simple text-based format. In use cases for ABAC4S

protocol implementation presented in this thesis, representation of developed access rules is

provided in open JavaScript Object Notation (JSON) format. In addition, other portability

characteristics can be easily enforced with access rules. For example, use of functions that are

portable between different spreadsheet applications can be enforced with ABAC4S access rules

to improve overall portability of spreadsheet program.

7.2. Automated Spreadsheet Quality Assurance

In the work of Jannach et al. [63], automated spreadsheet quality assurance approaches have

been classified into finer-grained scheme. The classification provided by authors analyzed

various automated spreadsheet quality assurance approaches in terms of their capabilities to

serve both finding (detection) and avoiding (prevention) errors and quality issues in spreadsheet

programs. The following automated quality assurance approaches are presented in the work of

Jannach et al. [63]:

• Visualization-based approaches: These approaches provide the user with a visually

enhanced representation of some aspects of the spreadsheet to help him or her

understand the interrelationships and dependencies between cells or larger blocks of the

spreadsheet. These visualizations help the user to quickly detect anomalies and

irregularities in the spreadsheet.

• Static analysis & reports: These approaches are based on static code analysis and aim to

point the developer to potentially problematic areas of the spreadsheet. Examples of

techniques include “spreadsheet smells” or the detection of data clones but also the

typical family of techniques found in commercial tools capable of reporting summaries

about unreferenced cells.

• Testing-based techniques: The methods in this category aim to stimulate and support

the developer to systematically test the spreadsheet application during or after

construction. The supporting tools for example include mechanisms for test case

management, the automated generation of test cases or analysis of the test coverage.

• Automated fault localization & repair: The approaches in this category rely on a

computational analysis of possible causes of an error or unexpected behavior through

code debugging and analysis tools. They rely on additional input by the developer such

as test cases or statements about the correctness of individual cells. Modern approaches

65

for automated fault localization and repair are based on Large Language Models (LLM)

specifically trained for spreadsheets capable of providing “repair” suggestions and

syntax reconstruction [22].

• Model-driven development approaches: Methods in this category mainly adopt the idea

of using (object-oriented) conceptual models as well as model-driven software

techniques during development of spreadsheet programs. The typical advantages of

such approaches include the introduction of additional layers of abstraction or the use

of code-generation mechanisms.

• Design and maintenance support: The approaches in this category either help the

spreadsheet developer to end up with better error-free designs or support him or her

during spreadsheet construction. The mechanisms proposed in that context for example

include automated refactoring tools and spreadsheet code suggestions provided by tools

such as FLAME language model [22].

Overview of main categories for automated quality assurance of spreadsheets proposed by

Jannach et al. [63] is presented in Table 6.

Table 6. Summary of spreadsheet QA approaches

Automated Spreadsheet QA Finding Errors Avoiding Errors

Visualization-base approaches x x

Static code analysis and reports x x

Testing approaches x

Automated fault localization and repair x

Model-driven development approaches x

Design and maintenance support x

ABAC4S protocol for automated quality assurance of spreadsheet programs uniquely

addresses both methods in focus of quality assurance research, finding (detection) and avoiding

(prevention) of spreadsheet errors and quality issues. In comparison to other automated quality

assurance approaches presented by Jannach et al. [63], unique properties of proposed ABAC4S

protocol can be summarized as follows:

• ABAC4S protocol for automated quality assurance of spreadsheet programs allows

comprehensive control over user’s interactions with spreadsheets in enterprise

environments based on roles and job descriptions modeled with ABAC4S access rules.

66

• ABAC4S protocol can control behavioral and structural quality criteria for spreadsheets

on granular level of spreadsheet resources and complex authorization schemes present

in multi-user environments.

• ABAC4S protocol can be combined successfully with other spreadsheet quality

assurance approaches presented in the work by Jannach et al. [63], depending on needs

and maturity of organizations willing to improve quality of their spreadsheets.

67

8. ABAC4S Protocol Use Cases

A practical example of ABAC4S protocol for automated quality assurance of spreadsheets

in multi-user environments will be demonstrated with two use cases. In the first case, ABAC4S

protocol was implemented to manage the lifecycle of spreadsheet used as IT Administrator

logbook. The author of this thesis developed this spreadsheet use case as request from small

company IT department to maintain structured IT Administrator logbook. In the second case,

ABAC4S protocol was implemented to manage calibration processes within analytical

laboratory. The Calibration process for Negative Temperature Coefficient (NTC) probes have

been supported with spreadsheet program to record calibration results and provide structured

reports to laboratory personnel. In both cases, standalone versions of Microsoft Excel

spreadsheet have been used (Version 2505 Build 16.0.18827.20102, 64-bit). ABAC4S protocol

computational logic has been developed by the author of this thesis as collection of scripts in

Python programming language [54]. It is important to note that used scripts are not production

ready and have been used primarily as a proof-of-concept research tool. Scripts have been

executed asynchronously to simulate ABAC4S computational logic, including parsing of excel

spreadsheets xlsx files and parsing of access rules as textual comma separated files with tuples

representing ABAC4S access rules. An implementation of Depth-First Graph Edit Distance

(DF-GED) algorithm from Python NetworkX library (optimal_edit_paths function)

has been used to determine changes performed by users in spreadsheets [55]. In both cases,

ABAC4S protocol has been deployed in detective mode where user’s action and spreadsheet

state transitions have been evaluated with ABAC4S protocol after the changes have been

recorded in spreadsheets. The goal was to minimize impact on spreadsheet users, and existing

habits on how users interact with their spreadsheets.

8.1. IT Administrator Logbook

Process of maintaining servers and networking equipment within small company is

documented in IT Administrator logbook. On a weekly basis, computer administrators perform

critical sets of activities to upgrade and maintain all required servers owned by company.

Computer administrators are divided into two groups, first managing Microsoft Windows based

servers, and second managing Linux based servers. It is important that all critical maintenance

and patching activities are initiated and completed during Friday’s afternoon with minimal

impact to business processes. During the same planned maintenance period, IT network

administrators should as well conduct key activities on networking equipment. Servers and

68

networking equipment have dedicated (Internet Protocol) IP addresses that uniquely identifies

each host on the company network. Each administrator should log in to the spreadsheet diary

logbook short information about impacted asset during and status of completed activities. The

company has an internal software development department with experienced spreadsheet

developer and structured development standard in place. Based on the provided short process

description in place for maintenance activities, following spreadsheet structural requirements

and user’s roles are defined:

• Spreadsheet developer should perform coding and development activities on separate

development instance named “diary_logbook_dev” and after successful testing, this

development instance should be merged to production instance named

“diary_logbook_prod”

• Diary logbook spreadsheet should contain two worksheets. First worksheet named

“Logbook”, should contain Table named “Logtable” with following columns used to

document activities performed. “Seq” is auto incremented column documenting

sequence number of performed activity. Second column is named “Date” which

document the date when maintenance have been performed. Third column in table is

named “IP Address” containing unique network address of asset where activities have

been performed. Forth column named “Status” should contain values “Passed”, “In

Progress”, “Rejected” or “Failed”. In case of “Failed” status, backup team should work

jointly with IT administrators to recover affected IT asset to latest possible state. State

“Rejected” designates unsuccessful maintenance or patching activity, but affected asset

is still operating with previous version of system software. In last column of the table,

named “Group”, IT Administrator group should be entered as “Windows”, “Linux” or

“Network”, depending on IT Administrator responsibilities. Only developer is allowed

to change worksheet “Logbook” structure and layout. IT Administrators should be

allowed only to add new entries in the table “Logtable” according to limitations derived

from their job responsibilities. IP addresses of affected assets should be controlled by

access rules, and for example network administrator is not allowed to document

activities for Microsoft Windows or Linux servers. Real IP addresses are obfuscated in

this example with artificially created class C IP addresses for each relevant group of IT

assets. Class C IP addresses are part of the IPv4 addressing scheme and are designed for

69

smaller networks used in home and private networks. Just for the purpose of this

example, imaginary set of IP addresses for each IT asset group are defined as follows:

o Windows Servers IP address range: 192.168.1.10-192.168.1.100.

o Linux Servers IP address range: 192.168.1.101-192.168.1.200.

o Networking devices IP address range: 192.168.1.201-192.168.1.300.

• In second worksheet named “Dashboard”, aggregated statistics of all maintenance

activities for certain date should be presented. Statistics should be presented in simple

tabular format. Table named “MaintenanceStatus” should contain all data aggregated

from worksheet “Logbook” with following columns. In first column named “Date”,

summary of all activities from worksheet “Logbook” on certain date should be

presented. In consecutive columns, four columns named “Passed”, “In progress”,

“Rejected” and “Failed” are repeated for three different asset categories “Windows”,

“Linux” and “Network”, thus providing aggregated view for three different groups of

assets and IT administrators conducting maintenance activities. Only spreadsheet

developer is allowed to change and modify this worksheet on developer instance. On

production instance, both developer and all IT administrators should have view only

authorizations. Color coding and visual structure of Dashboard should follow existing

company’s software development standards in place.

With the above description of the maintenance process and spreadsheet structural

requirements, developer access rules for ABAC4S protocol should be structured as follows:

(developer, create, Worksheet.name=”Logbook”,

Instance=”diary_logbook_dev”)∧

(developer, create, Worksheet.name=”Dashboard”,

Instance=”diary_logbook_dev”)∧

(developer, create, Logbook.Table.name=”Logtable”,

Instance=”diary_logbook_dev”)∧

(developer, create, Dashboard.Table.name=” MaintenanceStatus”,

Instance=”diary_logbook_dev”)∧

(developer, create, Logtable[#Headers]=[”Seq”,”Date”,”IP

Address”,”Status”,”Group”], Instance=”diary_logbook_dev”)∧

70

(developer, create, MaintenanceStatus[#Headers] =[”Date”, ”Win

Passed”,”Win In Progress”,”Win Rejected”,”Win Failed”, ”Linux

Passed”,”Linux In Progress”,”Linux Rejected”,”Linux Failed”,

”Network Passed”,”Network In Progress”,”Network

Rejected”,”Network Failed”], Instance=”diary_logbook_dev”)∧

(developer, create, Logtable[[#Data],[Status]]=[”Passed”, ”In

progress”,”Rejected”,”Failed”],Instance=”diary_logbook_dev”)∧

(developer, create, Logtable[[#Data],[Group]]=[”Windows”,

”Linux”, ”Network”], Instance=”diary_logbook_dev”)∧

(developer, read, Worksheet.name=”Logbook”,

Instance=”diary_logbook_prod”)∧

(developer, read, Worksheet.name=”Dashboard”,

Instance=”diary_logbook_prod”)∧

With the above description of the maintenance process and spreadsheet structural

requirements, IT Administrator for Microsoft Windows servers access rules for ABAC4S

protocol should be structured as follows:

(winadmin, update, Logtable[[#Data][Date]],

AND(Instance=”diary_logbook_prod”, Day=”Friday”)∧

(winadmin, update, AND(Logtable[[#Data],[IP

Address]]>”192.168.1.10”, Logtable[[#Data],[IP

Address]]<”192.168.1.100”), AND(Instance=”diary_logbook_prod”,

Day=”Friday”)∧

(winadmin, update, Logtable[[#Data],[Status]]=[”Passed”, ”In

progress”, ”Rejectd”, ”Failed”],

AND(Instance=”diary_logbook_prod”, Day=”Friday”)∧

(winadmin, update, Logtable[[#Data],[Group]]=”Windows”,

AND(Instance=”diary_logbook_prod”, Day=”Friday”)∧

(winadmin, read, Worksheet.name=”Logbook”,

Instance=”diary_logbook_prod”)∧

(winadmin, read, Worksheet.name=”Dashboard”,

Instance=”diary_logbook_prod”)

71

Similarly, IT Administrator for Linux servers access rules for ABAC4S protocol should be

structured as follows:

(linuxadmin, update, Logtable[[#Data][Date]],

AND(Instance=”diary_logbook_prod”, Day=”Friday”)∧

(linuxadmin, update, AND(Logtable[[#Data],[IP

Address]]>”192.168.1.101”,Logtable[[#Data],[IP

Address]]<”192.168.1.200”), AND(Instance=”diary_logbook_prod”,

Day=”Friday”))∧

(linuxadmin, update, Logtable[[#Data],[Status]]=[”Passed”, ”In

progress”, ”In progress”, ”Failed”],

AND(Instance=”diary_logbook_prod”, Day=”Friday”))∧

(linuxadmin, update, Logtable[[#Data],[Group]]=”Linux”,

AND(Instance=”diary_logbook_prod”, Day=”Friday”))∧

(linuxadmin, read, Worksheet.name=”Logbook”,

Instance=”diary_logbook_prod”)∧

(linuxadmin, read, Worksheet.name=”Dashboard”,

Instance=”diary_logbook_prod”)

Finally, IT Administrator for networking infrastructure access rules for ABAC4S protocol

should be structured as follows:

(netadmin, update, Logtable[[#Data][Date]],

AND(Instance=”diary_logbook_prod”, Day=”Friday”)∧

(netadmin, update, AND(Logtable[[#Data],[IP

Address]]>”192.168.1.201”,Logtable[#Data],[IP

Address]]<”192.168.1.300”), AND(Instance=”diary_logbook_prod”,

Day=”Friday”))∧

(netadmin, update, Logtable[[#Data],[Status]]=[”Passed”, ”In

progress”, ”In progress”, ”Failed”],

AND(Instance=”diary_logbook_prod”, Day=”Friday”))∧

(netadmin, update, Logtable[[#Data],[Group]]=”Network”,

AND(Instance=”diary_logbook_prod”, Day=”Friday”))∧

72

(netadmin, read, Worksheet.name=”Logbook”,

Instance=”diary_logbook_prod”)∧

(netadmin, read, Worksheet.name=”Dashboard”,

Instance=”diary_logbook_prod”)

With the above set of ABAC4S access rules for four different user groups, user’s behaviors

within diary logbook spreadsheet program are fully controlled and congruent with defined

business process. In addition, all specified spreadsheet structural requirements are satisfied with

the specified ABAC4S access rules. With combination of the environment attributes, complex

user’s roles and various timing constraints can be modelled for development and production

instances. The worksheet “Logbook” in developed spreadsheet “diary_logbook_prod.xlsx” is

presented in Figure 18.

Figure 18. Logbook Worksheet

The worksheet “Dashboard” in developed spreadsheet “diary_logbook_prod.xlsx” is

presented in Figure 19.

73

Figure 19. Dashboard Worksheet

8.2. Calibrations of Sensors in Analytical Laboratory

Negative Temperature Coefficient (NTC) probe calibration spreadsheet is used daily within

analytical laboratory. Every Monday, a calibration expert performs checks of all 65 NTC probes

utilized in the laboratory. Dedicated excel spreadsheet file is used for each NTC probe due to

specific regulatory requirement. instance is managed for each calibration probe. In case, NTC

probe does not perform satisfactory, calibration expert initiates calibration procedure. For

cheaper NTC probes with lower accuracy, three-point Steinhart–Hart equation is used to

perform NTC probe calibration [62]. For expensive and accurate NTC probes, more complex

calibration procedure is performed with multiple measuring points used for Steinhart–Hart

equation. After completion of all NTC probes checks and calibration procedures, Laboratory

Manager reviews all calibration spreadsheets and if results of NTC probe calibration comply

with laboratory guidelines, Manager changes color of result cell and corresponding worksheet

to green as evidence of review and compliant status of NTC probes. Each Wednesday, the

laboratory administrator edits header labels and adds information about probe serial numbers

and information about calibration equipment used for NTC calibration. After completion, the

laboratory administrator prints calibrations results on preformatted stickers and attaches them

on probe housing. Based on the provided process description in place for calibration of NTC

probes, following spreadsheet structural requirements and user’s roles are defined:

• Spreadsheet developer should perform coding and development activities on separate

development instance named “ntc_calibration_dev” and after successful testing, this

74

development instance should be merged to production instance named

“ntc_calibration_prod”.

• NTC calibration spreadsheet should contain two worksheets. First worksheet named

“NTC”, should contain input fields to enter NTC probe serial number and details of

calibration equipment used. Worksheet “NTC” should also contain three input fields to

enter measured temperatures and three input fields to enter measured NTC Probe

resistances. The last part of the worksheet NTC should be three fields presenting

calculated resulting Steinhart-Hart coefficients. All input fields should have associated

labels in the left column of input value and physical unit labels in right column of input

values. All input cells should be highlighted in light yellow color. All output cells should

be highlighted in light grey representing status before managerial review and in light

green color if laboratory manager confirms valid status of affected NTC probe. tIn

second worksheet named “Calculation”, all calculation steps and intermediate formulas

should be entered reference with named ranges. Absolute and relative cell references

should be avoided. Links between input cells at worksheet NTC and calculation cells

should be also constructed with named ranges for all affected cells. All calculations

should be performed at the worksheet Calculation with results returned to worksheet

NTC with reference to named ranges representing determined Steinhart–Hart

coefficients.

• Users with role of spreadsheet developer assigned are allowed to change and modify

layout, structure and content of “ntc_calibration_dev” development instance of NTC

calibration spreadsheet. Spreadsheet developers are allowed to create and modify

worksheet Calculation on development instance of spreadsheet with all formulas used

to determine resulting coefficients. Formulas should be modularized to reflect

calculation steps required to determine final coefficients. After successful development

and testing, developer should create production instance “ntc_calibration_prod” that

will be further used for laboratory calibration processes. In production instance

“ntc_calibration_prod”, developer should have view only authorizations.

• Users with role of manager assigned should have update authorization on production

instance “ntc_calibration_prod” to modify background color of output cells in the NTC

worksheet. Allowed values for background color of output cells are light gray and light

green, with light green representing evidence of successful managerial review and

approval of calibration results.

75

• Users with role of analyst should have update authorizations of input fields for

temperatures and resistance on production instance “ntc_calibration_prod”. To ensure

that the calibration process follows defined standards for temperature ranges, allowed

temperature ranges for three calibration points are as follows:

o Temperature T1 allowed range: 0 - 10 °C.

o Temperature T2 allowed range: 20 - 30 °C.

o Temperature T3 allowed range: 80 - 90 °C.

• Users with role of administrator assigned should have update authorizations of input

fields for NTC probe serial number and calibration equipment on production instance

“ntc_calibration_prod”. Administrative work on calibration spreadsheets is allowed on

Wednesday to ensure that both laboratory analysts and managers have enough time to

complete their tasks and all NTC probes are calibrated and ready for laboratory

processes during Thursdays and Fridays.

With the above description of the NTC probe calibration process and spreadsheet structural

requirements, developer access rules for ABAC4S protocol should be structured as follows:

(developer, create, Worksheet.name=”NTC”,

Instance=”ntc_calibration_dev”)∧

(developer, create, Worksheet.name=”Calculation”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C2.name=”Serno”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C3.name=”cal_equipment”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C6.name=”T1”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C7.name=”T2”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C8.name=”T3”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C11.name=”R1”, Instance=”

ntc_calibration_dev”)∧

76

(developer, create, NTC.C12.name=”R2”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C13.name=”R3”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C17.name=”CoeffA”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C18.name=”CoeffB”, Instance=”

ntc_calibration_dev”)∧

(developer, create, NTC.C19.name=”CoeffC”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C2.name=”T0”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C3.name=”L1”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C4.name=”L2”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C5.name=”L3”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C6.name=”Y1”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C7.name=”Y2”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C8.name=”Y3”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C9.name=”Z2”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C10.name=”Z3”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C11.name=”C”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C12.name=”B”, Instance=”

ntc_calibration_dev”)∧

(developer, create, Calculation.C13.name=”A”, Instance=”

ntc_calibration_dev”)∧

77

(developer, read, Worksheet.name=”NTC”,

Instance=”ntc_calibration_prod”)∧

(developer, read, Worksheet.name=”Calculation”,

Instance=”ntc_calibration_prod”)

With the above description of the NTC probe calibration process and spreadsheet structural

requirements, manager access rules for ABAC4S protocol should be structured as follows:

(manager, update, Worksheet.name=”NTC”,

Instance=”ntc_calibration_prod”)∧

(manager, update, NTC.C17.backgroud_color=[”LightGrey”,

”LightGreen”], Instance=”ntc_calibration_prod”)∧

(manager, update, NTC.C18.backgroud_color=[”LightGrey”,

”LightGreen”], Instance=”ntc_calibration_prod”)∧

(manager, update, NTC.C19.backgroud_color=[”LightGrey”,

”LightGreen”], Instance=”ntc_calibration_prod”)∧

(manager, read, Worksheet.name=”Calculation”,

Instance=”ntc_calibration_prod”)

With the above description of the NTC probe calibration process and spreadsheet structural

requirements, analyst access rules for ABAC4S protocol should be structured as follows:

(analyst, update, Worksheet.name=”NTC”,

Instance=”ntc_calibration_prod”)∧

(analyst, update, TYPE(T1)=”Number”, Instance=”

ntc_calibration_prod”)∧

(analyst, update, TYPE(T2)=”Number”, Instance=”

ntc_calibration_prod”)∧

(analyst, update, TYPE(T3)=”Number”, Instance=”

ntc_calibration_prod”)∧

(analyst, update, TYPE(R1)=”Number”, Instance=”

ntc_calibration_prod”)∧

(analyst, update, TYPE(R2)=”Number”, Instance=”

ntc_calibration_prod”)∧

78

(analyst, update, TYPE(R3)=”Number”, Instance=”

ntc_calibration_prod”)∧

(analyst, read, Worksheet.name=”Calculation”,

Instance=”ntc_calibration_prod”)

Finally, administrator access rules for ABAC4S protocol should be structured as follows:

(administrator, update, Worksheet.name=”NTC”,

Instance=”ntc_calibration_prod”)∧

(administrator, update, TYPE(Serno.value)=”String”,

AND(Instance=” ntc_calibration_prod”, Day=”Wednesday”)∧

(administrator, update, TYPE(cal_equipment.value)=”String”,

AND(Instance=” ntc_calibration_prod”, Day=”Wednesday”))∧

(administrator, print, Worksheet.name=”NTC”, AND(Instance=”

ntc_calibration_prod”, Day=”Wednesday”))

In case of administrator access rules, an example of extension to CRUD actions is

demonstrated. Administrator has action “print” specified in access rules which permits printing

of worksheet NTC on instance “ntc_calibration_prod” every Wednesday. Worksheet NTC in

developed spreadsheet “ntc_calibration_prod.xlsx” is presented in Figure 20.

79

Figure 20. NTC Worksheet

Worksheet Calculation in developed spreadsheet “ntc_calibration_prod.xlsx” is presented in

Figure 21.

80

Figure 21. Calculation Worksheet

For the ABAC4S access rules definitions presented in both use cases, users’ authorization

and structural spreadsheet resource properties are denoted as abstract comma separated

quadruples. These abstract data structures can be transformed into programming language data

structures or encoded to other formats like XML (eXtensible Markup Language) or JSON

(JavaScript Object Notation) messages during specific implementation scenarios. In Appendix

C., ABAC4S access rules defined in both cases are presented in JSON notation, commonly used

as message exchange format in enterprise IT systems.

8.3. Users’ Satisfaction with ABAC4S Protocol

Both cases of ABAC4S protocol were implemented during the period of 6 months. The

author of the research presented in this thesis acted as facilitator and trainer for all participants

with various spreadsheet roles during use cases with ABAC4S protocol practical

implementation. In total 59 spreadsheet users participated during the period of 6 months. To

evaluate spreadsheet users’ satisfaction with practical ABAC4S implementation and document

81

valuable lessons learned at the end of the experiment, simple questionnaire with following three

questions has been collected from all spreadsheet users:

• How satisfied were you with the use of ABAC4S protocol for your spreadsheets?

(response on 1-5 scale, where 1 equal “very dissatisfied” and 5 equal “very satisfied”).

• List positive examples, how ABAC4S protocol improved your work and overall

experience with spreadsheets? (open-ended question according to spreadsheet user

preferences).

• List negative examples, how ABAC4S protocol impacted negatively your work and

overall experience with spreadsheets? (open-ended question according to spreadsheet

user preferences).

All 59 spreadsheet users that participated in both uses cases with various roles specified

with ABAC4S access rules provided answers to formulated questions. To the first question

administered, majority of participant answered the question either a 4 or 5 (23 answers for

“satisfied” and 34 answers for “very satisfied”), indicting an overall positive experience with

ABAC4S protocol for spreadsheets. Two spreadsheet users answered the first question with 1

(“very dissatisfied”) indicating their disagreement with overall spreadsheet use for business

processes presented in two use cases. Specifically, both spreadsheet users indicated that full

featured Enterprise Resource Planning (ERP) system should be used as a replacement for

spreadsheet use in organizations.

The second and third questions were open-ended questions that did not offer a

predetermined set of answers, allowing spreadsheet users to answer in their own words positive

and negative experience with use of ABAC4S protocol for their spreadsheets. All collected

answers are listed in the following tables, without any specific order or rank associated with

collected answers. The author of this research considers collected responses a valuable source

of user’s feedback for future research. Positive experience with ABAC4S and collected answers

to the second question are presented in Table 7.

82

Table 7. Positive user experience with ABAC4S protocol

No. Positive user experience with ABAC4S protocol

1. First impressions about ABAC4S access rule’s structure were negative, however after

a short period of usage and few access rules created from provided templates, initial

frustration vanished. In contrast, creation or modification of access rules helps with

documentation for actual job description.

2. ABAC4S access rules increased users’ satisfaction with laboratory processes and

clarified roles and responsibilities that users must demonstrate during the use of

spreadsheets.

3. Maintaining authorizations in other IT systems and applications is far more complex

and demands highly experienced IT administrator to transfer business roles to actual

authorizations with special syntax for each system. ABAC4S access rules are simple

to understand and maintain.

4. ABAC4S protocol for automated quality assurance of spreadsheet programs improved

compliance and regulatory status of analytical laboratory. Access rules were presented

to external auditors as evidence of proper access control and segregation of duties

between different users.

5. Documented and evaluated access rules improved laboratory documentation and

standard operating procedures.

6. ABAC4S access rules facilitate and speed up onboarding of new employees. Their

roles were documented with access rules and new employes could play on “sandbox”

spreadsheets before they start using production versions of spreadsheets.

7. ABAC4S protocol is invisible, and there are no changes in spreadsheet user interface.

Provided feedback from ABAC4S protocol is very granular, so the user knows what

must be corrected to return the spreadsheet in valid state.

Negative user’s experience with ABAC4S and collected answers to the third question are

presented in Table 8. Negative user experience with ABAC4S protocol

83

Table 8. Negative user experience with ABAC4S protocol

No. Negative user experience with ABAC4S protocol

1. ABAC4S protocol access rules are two complex to understand and maintain.

2. Detective ABAC4S protocol implementation is too slow. After the last change

submitted, feedback to the user should be provided faster, so that necessary corrections

can be made in spreadsheets.

Important to note in relation to second negative comment is that performance of python

scripts used for ABAC4S protocol computational logic was sometimes very slow. These scripts

are not ready for production use in enterprise environments and have been used primarily as a

proof-of-concept tool for the research presented in this thesis.

84

9. Conclusion and Further Research

In focus of the research presented in this thesis is automated quality assurance for

spreadsheets. Specifically, this thesis is structured around the novel ABAC4S (Attribute Based

Access Control for Spreadsheets) protocol designed for automated quality assurance of

spreadsheets in multi-user environments. In Chapter 1, the research methodology is presented

structured around design science research, formulated research goals and research hypothesis.

Comprehensive descriptions of research phases and expected outcomes are provided as part of

the defined research methodology. In Chapter 2, introduction to the spreadsheets is provided

with examples of publicly documented spreadsheet horror stories that constitute motivation for

research presented in this thesis. Chapter 3 provides a summary of related work in the field of

taxonomies for spreadsheet errors, automated detection of spreadsheet errors and controlled

access for spreadsheet users in modern enterprises. Afterwards, in Chapter 4, the ABAC4S

protocol is presented with descriptions of model components and protocol rules. In Chapter 5,

a brief introduction to model checking concepts is presented to establish foundation for Chapter

6 that provides formal verification of the proposed ABAC4S protocol with a symbolic model

checker. In Chapter 7, research related to spreadsheet quality assurance is introduced with

mapping of ABAC4S protocol characteristics to existing spreadsheet quality model and

automated approaches to spreadsheet quality assurance. In Chapter 8 of this thesis, two use

cases of ABAC4S protocol implementation are presented. The first case presents modeling of

ABAC4S access rules to support logging of IT administrator activities related to management

of key IT assets. In the second case, ABAC4S protocol was deployed to support calibration

processes for NTC measurement probes in analytical laboratory. For both cases, the complete

specifications of ABAC4S access rules are provided according to defined processes and user’s

job descriptions. Finally, this chapter provides critical discussions with reflection on conducted

research, key findings and contributions to the spreadsheet research knowledge base. This thesis

is accompanied by three appendices providing supplemental information to the research

presented. In Appendix A., structured tables references are provided to support ABAC4S

protocol access rules encoding presented in Chapter 4.5. In Appendix B., complete SMV source

code for ABAC4S protocol is provided as part of model checking verification presented in

Chapter 6. In Appendix C., examples of ABAC4S access rules in JSON format are provided to

support developed access rules presented in Chapter 8. of this thesis.

To address the first research goal, novel ABAC4S protocol for automated quality assurance

based on spreadsheet representation as a collection of resources has been developed. Defined

85

protocol addresses the need identified to control user’s interaction with spreadsheets on granular

level of spreadsheet resources in multi-user environments. In addition, ABAC4S protocol for

automated quality assurance of spreadsheet programs uniquely addresses both methods in focus

of quality assurance research, finding (detection) and avoiding (prevention) of spreadsheet

errors and quality issues. The formal specification of novel ABAC4S protocol for spreadsheet

has been provided with multi-faceted approach and combination of visual modeling,

specification of protocol building blocks with algebraic data structures and direct graph

representation.

To address the second research goal, defined ABAC4S protocol specifications has been

verified for correctness with the model checking approach. Detailed steps and research journey

from original ABAC4S protocol idea to formal specification of the protocol in applicable model

checking language have been presented during this research phase. During construction of

model checking specifications with SMV language, abstraction and refinement of model

characteristics have been utilized to reduce model complexity and prevent state space explosion

during verification with model checker. Representation with algebraic and graph data structures

during ABAC4S protocol design and development have been instrumental during conversion

to model checker SMV language and simulating transitions between spreadsheet states.

Modules in SMV language have been designed to represent all possible state transitions with

associated user’s actions and hierarchical tree like representation of spreadsheet resources.

Consequently, with state transitions for all possible combinations of user’s actions and

hierarchical representation of spreadsheet resources model checker verified all possible realistic

scenarios where users in multi-user environments might have assigned roles of various

complexities.

To address formulated research hypothesis, correctness property of the ABAC4S protocol

has been evaluated with CTL temporal logic specification 𝐴𝐺 (𝑝 → 𝐴𝐹 𝑞) (18). This CTL

temporal logic specification evaluates all possible spreadsheet state changes for given user’s

roles. Model checking tool explores all possible traces in search of counterexample where

desired property formulated with research hypothesis is not satisfied. As demonstrated in

Chapter 6., NuSMV model checker evaluates CTL temporal logic specification to true, thus

formally verifying that property formulated in research hypothesis holds, under assumption of

correct SMV model specification.

Multiple challenges with model abstraction and state space explosion have been addressed

during simulation with the model checking tool. Specifically, the reduction in ABAC4S

protocol complexity based on single root path definition introduced in Chapter 4.3.4 of this

86

thesis has been instrumental for successful verification with a model checking approach without

loss of model generality and correctness. Even though verification with model checker has been

reduced to bare minimum representation of single root path for each spreadsheet resource, in

case of 4 allowed actions and 4 different user roles, the model checking tool must explore 167

(more than 268 million) possible states. To illustrate the importance of appropriate model

abstraction and its impact on the state space explosion, in case the number of modeled actions

and user roles increases to five, possible explorable state would grow to 257. This small increase

in model complexity resulted in a more than 22 times larger model state space that must be

explored with model checking tool.

Spreadsheet related research is a rich knowledge base with great scientific contributions.

Results of the research presented in this thesis related to automated quality assurance for

spreadsheets used in multi-user environments could usefully be combined with unit errors

detection in spreadsheet [18], other commercial spreadsheet auditing tools [20] and modern

large language models utilized to improve spreadsheet quality [22]. Research presented in this

thesis contributes to spreadsheet research knowledge base with following:

• Novel ABAC4S protocol for automated quality assurance of spreadsheets in multi-user

environments uniquely addresses both methods in focus of automated quality assurance

research, finding (detection) and avoiding (prevention) of spreadsheet errors and quality

issues.

• A multi-faceted approach to formal specification of ABAC4S protocol allows clear

communication of research deliverables to thesis readers and other researchers focused

on exciting research related to spreadsheets.

• Application of the model checking technique in verification of spreadsheet related

research problems brings new perspective in spreadsheet research. This thesis presented

modeling guidelines and insights into how to convert ABAC4S protocol specifications

to the language accepted by the model checking tool.

• The ABAC4S protocol has been designed with user-centric approach to minimize

impact on existing spreadsheet use in multi-user environments. This approach permits

organizations to retain investment in their spreadsheets.

• Two use cases presented as part of the research suggest concrete ways for deploying

ABAC4S protocol in other multi-user environments.

87

Despite advancements in understanding and mitigating spreadsheet risks, the dynamic and

often ad hoc nature of spreadsheet life cycle phases continue to present challenges.

Opportunities to further automate the generation of machine-readable user’s access rules and

implementation of ABAC4S protocol for automated quality assurance of spreadsheets in

various multi-user environments will be explored in future research. Other possible directions

for future research will include the integration of ABAC4S protocol with artificial intelligence

methods for spreadsheet code suggestion and syntax reconstruction. Ultimately, ensuring

spreadsheet quality is not merely a technical exercise but a critical component of informed and

robust organizational functioning. I believe that ABAC4S protocol for automated quality

assurance of spreadsheets in multi-user environments is one step in the right direction towards

organizational cultures that prioritize spreadsheet quality as a fundamental aspect of data

governance and decision-making.

88

References

[1] C. Scaffidi, M. Shaw, and B. A. Myers, "Estimating the numbers of end users and end

users programmers", In Proc. of VL/HCC '05, pp. 207-214, 2005.

[2] L. Bradley and K. McDaid, “Using Bayesian Statistical Methods to Determine the Level

of Error in Large Spreadsheets”, Proceedings of the International Conference on Software

Engineering, pp. 351–354., 2009.

[3] T. Reschenhofer and F. Matthes, “A Framework for the Identification of Spreadsheet

Usage Patterns”, Proceedings of the European Conference on Information Systems, 2015.

[4] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards, “Quality Control in

Spreadsheets: A Software Engineering-Based Approach to Spreadsheet Development,”

Proc. 33rd Hawaii Int’l Conf. System Sciences, pp. 1-9, 2000.

[5] P. O’Beirne, F. Hermans, T. Cheng, M. P. Campbell, European Spreadsheet Risk Interest

Group, “https://eusprig.org/research-info/horror-stories/”, [Accessed: Feb. 23, 2025].

[6] M. Zdilar, “Attribute Based Access Control Metamodel for Spreadsheet Programs”, 35th

International Scientific Conference CECIIS 2024. Varaždin: University of Zagreb,

Faculty of Organization and Informatics, pp. 409-416., 2024.

[7] P. Brown, J. Gould, “An experimental study of people creating spreadsheets”, ACM

Transactions on Office Information Systems 5, pp.258–272, 1987.

[8] W. J. Doherty, W. Pope, “Computing as a tool for human augmentation”, IBM Tech Rep.

RC-11622, 1986.

[9] F. Galletta, D. Abraham, M. El Louadi, W. Leske, Y. Pollalis and J. Sampler, “An

empirical study of spreadsheet error-finding performance”, Accounting, Management &

Information Technology Vol. 3 No. 2, pp. 79–95, 1993.

[10] R. Panko and R. Halverson, “Spreadsheets on trial: a survey of research on spreadsheet

risks”, Proceedings of the 29th Annual Hawaii International Conference on Systems

Sciences, pp. 326–335, 1996.

[11] S. G. Powell, K. R. Baker and B. Lawson, “A critical review of the literature on

spreadsheet errors”, Decision Support Systems, pp. 128-138, 2008.

89

[12] K. Rajalingham, D. Chadwick, B. Knight, “Classification of spreadsheet errors”,

Proceedings of the European Spreadsheet Risks Interest Group Annual Conference,

Greenwich, England, pp. 23-34, 2000.

[13] P. O’Beirne, “In Pursuit of Spreadsheet Excellence”, Proceedings of EuSpRIG, pp. 171-

185, 2008.

[14] J. Cunha, J. Fernandes, C. Peixoto and J. Saraiva, “A Quality model for Spreadsheets”,

Proceedings of the 8th International Conference on the Quality of Information and

Communications Technology, pp. 231-236, 2012.

[15] ISO (2001), “ISO/IEC 9126-1: Software engineering-product quality-part 1: Quality

model,” Geneva, Switzerland, 2001.

[16] M. Erwig and M. M. Burnett, “Adding apples and oranges”, In Proc. Of PADL '02, pp.

173-191, 2002.

[17] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A type system for statically

detecting spreadsheet errors”, In Proc. of ASE '03, pp. 174-183, 2003.

[18] R. Abraham and M. Erwig. “Ucheck: A spreadsheet type checker for end users. Journal

of Visual Languages and Computing”, Vol. 18, pp. 71-95, 2007.

[19] R. Abraham, M. Erwig, and S. Andrew, “A type system based on enduser vocabulary”, In

Proc. of VL/HCC, pp. 215-222, 2007.

[20] D. Nixon, M. O’Hara, “Spreadsheet Auditing Software”, In Proc. Of EuSpRIG, 2000.

[21] R. Abraham and M. Erwig, “Mutation Operators for Spreadsheets”, IEEE Transactions on

Software Engineering”, Vol. 35 No. 10, 2009.

[22] H. Joshi, A. Ebenezer, J. Cambronero, S. Gulwani, A. Kanade, V. Lee, ... & G.

Verbruggen, “FLAME: A small language model for spreadsheet formulas”, arXiv

preprint arXiv:2301.13779, 2023.

[23] M. Korman, R. Lagerström, M. Ekstedt, “Modeling enterprise authorization: a unified

metamodel and initial validation.” Complex Systems Informatics and Modeling Quarterly,

(7), 1-24, 2016.

[24] C. T. Hu, “Attribute based access control (ABAC) definition and considerations.”, NIST,

2014.

90

[25] A. Cimati, E. Clarke, F. Giunchiglia, M. Roveri, “NuSMV: A new symbolic model

verifier”, Computer Aided Verification: 11th International Conference, CAV’99 Trento,

Italy, July 6–10, 1999 Proceedings 11 (pp. 495-499). Springer Berlin Heidelberg, 1999.

[26] E. M. Clarke, O. Grumberg, D. Peled, “Model Checking”, MIT Press, 2000.

[27] J. G. Hoizmann, “Design and Validation of Computer Protocols”, Prentice Hall, 1991.

[28] C. Baier, J. P. Katoen, “Principles of Model Checking”, MIT Press, 2008.

[29] E. M. Clarke, E. A. Emerson, “Design and synthesis of synchronization skeletons using

branching time temporal logic”, Workshop on Logic of Programs, ser. Lecture Notes in

Computer Science, vol. 131, pp. 52–71., 1981.

[30] E. A. Emerson, E. M. Clarke, “Characterizing correctness properties of parallel programs

using fixpoints,” In Proceedings of the 7th Colloquium on Automata, Languages and

Programming, pp. 169–181., 1980.

[31] T. Reinbacher, “Model checking and static analysis of Intel MCS-51 Assembly Code”,

Wien, 2012.

[32] K. McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.

[33] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen,

“Systems and software verification: model-checking techniques and tools”, Springer

Science & Business Media, 2013.

[34] M. Zdilar, “https://github.com/mirogit/abac-spreadsheets”, GitHub repository, 2025.

[35] A. R. Hevner, S.T. March, J. Park, S. Ram, “Design Science-Design Science in

Information Systems Research”, MIS Quarterly 28, pp.75-105, 2004.

[36] G. Vitagliano, L. Reisener, L. Jiang, M. Hameed, F. Neumann, “Mondrian: Spreadsheet

layout detection”, In Proceedings of the 2022 International Conference on Management

of Data, pp. 2361-2364., 2022.

[37] S. Aurigemma, R. R. Panko, “The detection of human spreadsheet errors by humans

versus inspection (auditing) software”, In Proc. Of EuSpRIG, 2010.

[38] R. Butler, “Is this spreadsheet a tax evader?”, Proceedings of the 33rd Hawaii International

Conference on System Sciences, pp. 1–6, 2000.

[39] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, “A review of access control metamodels”,

Procedia Computer Science, 184, 445-452., 2021.

91

[40] D. D. Downs, J. R. Rub, K. C. Kung, C. S. Jordan, “Issues in discretionary access control”,

In 1985 IEEE symposium on security and privacy, pp. 208-208, IEEE, 1985.

[41] Y. Dholakia, “Mandatory Access Control – Problems in it and propose a model which

overcomes them”, International Research Journal of Engineering and Technology

(IRJET), (4)4, pp.2031-2035, 2017.

[42] E. O. Boadu, G. K. Armah, K. “Role-based access control (RBAC) based in hospital

management”, Int. J. Softw. Eng. Knowl. Eng, 3, 53-67., 2014.

[43] C. Gross, “Announcing LAMBDA Helper Functions: Lambdas as arguments and more.

https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-helper-

functions-lambdas-as-arguments-and-more/ba-p/2576648”, (June 10, 2024).

[44] P. Bartholomew, P. “Excel as a Turing-complete Functional Programming Environment”,

arXiv preprint arXiv:2309.00115, 2023.

[45] “https://ecma-international.org/publications-and-standards/standards/ecma-376/”,

ECMA International, [Accessed: Jun. 03, 2025].

[46] C. Hatmaker, “Reducing Errors in Excel Models with Component-Based Software

Engineering”, arXiv preprint arXiv:2309.00650, 2023.

[47] Announcing Python in Excel: Combining the power of Python and the flexibility of Excel.

“https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-

combining-the-power-of-python-and-the/ba-p/3893439”, [Accessed: Jun. 03, 2025].

[48] T. Reschenhofer, B. Waltl, K. Shumaiev, F. Matthes, “A conceptual model for measuring

the complexity of spreadsheets”, arXiv preprint arXiv:1704.01147, 2017.

[49] “https://support.microsoft.com/en-us/office/error-type-function-10958677-7c8d-44f7-

ae77-b9a9ee6eefaa”, Microsoft Excel Error Types, [Accessed: Jun. 03, 2025].

[50] “https://support.microsoft.com/en-us/office/using-structured-references-with-excel-

tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e”, Microsoft Excel structure references

with Excel tables, [Accessed: Jun. 03, 2025].

[51] Peixoto, Christophe Campos, "Quality Model for Spreadsheets: Design and

Implementation. MS thesis“, Universidade do Minho (Portugal), 2011.

92

[52] E. Aivaloglou, D. Hoepelman, F. Hermans, "A grammar for spreadsheet formulas

evaluated on two large datasets." 2015 IEEE 15th International Working Conference on

Source Code Analysis and Manipulation (SCAM). IEEE, 2015.

[53] IEEE Computer Society, “IEEE Standard Classification for Software Anomalies”, In:

IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), pp. 1–23 (cit. on p. 1), 2010.

[54] G. Van Rossum, F. L. Drake, “Python 3 Reference Manual”, Scotts Valley, CA:

CreateSpace, 2009.

[55] A. Hagberg, P. Swart, D. Chult, “Exploring network structure, dynamics, and function

using NetworkX”, (No. LA-UR-08-05495; LA-UR-08-5495) Los Alamos National Lab.

(LANL), Los Alamos, NM (United States), 2008.

[56] M. Vento, "A long trip in the charming world of graphs for pattern recognition". Pattern

Recognition, 48(2):291–301., 2015.

[57] Zeina Abu-Aisheh, et al. "An exact graph edit distance algorithm for solving pattern

recognition problems." 4th International Conference on Pattern Recognition Applications

and Methods 2015. 2015.

[58] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals.”, Doklady Akademii Nauk SSSR, 163(4), 845–848., 1965.

[59] K. Riesen, S. Fankhauser, H. Bunke, “Speeding up graph edit distance computation with

a bipartite heuristic.”, In Mining and Learning with Graphs, MLG 2007, Proceedings.,

2007.

[60] “https://www.iso.org/quality-management/quality-assurance”, Quality assurance: A

critical ingredient for organizational success, [Accessed: Jun. 03, 2025].

[61] M. Fowler. “Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Boston, MA, USA, 1999.

[62] Steinhart, John S., and Stanley R. Hart. "Calibration curves for thermistors." Deep sea

research and oceanographic abstracts. Vol. 15. No. 4. Elsevier, 1968.

[63] Dietmar Jannach, et al. "Avoiding, finding and fixing spreadsheet errors–A survey of

automated approaches for spreadsheet QA." Journal of Systems and Software 94 (2014):

129-150., 2014.

93

APPENDIXES

94

Appendix A. Structured Tables References

Syntax and for structured tables references are defined in table Table 9. [50].

Table 9. Structured Tables References

Item Specifier Refers to:

#All The entire table, including column headers, data, and totals

(if any).

#Data Just the data rows.

#Headers Just the header row.

#Totals Just the total row. If none exists, then it returns null.

#This Row

or

@

or

@[Column Name]

Just the cells in the same row as the formula. These

specifiers can't be combined with any other special item

specifiers. Use them to force implicit intersection behavior

for reference or to override implicit intersection behavior

and refer to single values from a column.

Excel automatically changes #This Row specifiers to the

shorter @ specifier in tables that have more than one row of

data. But if your table has only one row, Excel doesn't

replace the #This Row specifier, which may cause

unexpected calculation results when you add more rows. To

avoid calculation problems, make sure you enter multiple

rows in your table before you enter any structured reference

formulas.

.

95

Appendix B. SMV Source Code

MODULE spreadsheet_t()

VAR

 attributes:{s_a1,s_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

 add_in:add_in_t();

 named_object:named_object_t();

 worksheet:worksheet_t();

MODULE add_in_t()

VAR

 attributes:{a_a1,a_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

MODULE named_object_t()

VAR

 attributes:{no_a1,no_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

MODULE worksheet_t()

VAR

 attributes:{ws_a1,ws_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

 table:table_t();

 cell:cell_t();

MODULE table_t()

VAR

 attributes:{t_a1,t_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

 cell:cell_t();

MODULE cell_t()

VAR

 attributes:{c_a1,c_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

96

 formula:formula_t();

MODULE formula_t()

VAR

 attributes:{f_a1,f_a2};

 role:{developer,tester,analyst,manager};

 a:{create,read,update,delete};

MODULE main

VAR

 spreadsheet:spreadsheet_t();

ASSIGN

next(spreadsheet.add_in.a) :=

 case

 (spreadsheet.role=spreadsheet.add_in.role) & \

(spreadsheet.a=read) & (spreadsheet.add_in.a in \

{update,create,delete}): read;

 (spreadsheet.role=spreadsheet.add_in.role) & \

(spreadsheet.a=update) & (spreadsheet.add_in.a in \

{read,create,delete}): update;

 (spreadsheet.role=spreadsheet.add_in.role) & \

(spreadsheet.a=delete) & (spreadsheet.add_in.a in \

{read,create,update}): delete;

 (spreadsheet.role=spreadsheet.add_in.role) & \

(spreadsheet.a=create) & (spreadsheet.add_in.a in \

{read,update,delete}): create;

 TRUE : spreadsheet.add_in.a;

 esac;

next(spreadsheet.named_object.a) :=

 case

 (spreadsheet.role=spreadsheet.named_object.role) & \

(spreadsheet.a=read) & (spreadsheet.named_object.a in \

{update,create,delete}): read;

 (spreadsheet.role=spreadsheet.named_object.role) & \

(spreadsheet.a=update) & (spreadsheet.named_object.a in \

{read,create,delete}): update;

 (spreadsheet.role=spreadsheet.named_object.role) & \

(spreadsheet.a=delete) & (spreadsheet.named_object.a in \

{read,create,update}): delete;

97

 (spreadsheet.role=spreadsheet.named_object.role) & \

(spreadsheet.a=create) & (spreadsheet.named_object.a in \

{read,update,delete}): create;

 TRUE : spreadsheet.named_object.a;

 esac;

next(spreadsheet.worksheet.a) :=

 case

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a in \

{update,create,delete}): read;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=update) & (spreadsheet.worksheet.a in \

{read,create,delete}): update;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=delete) & (spreadsheet.worksheet.a in \

{read,create,update}): delete;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=create) & (spreadsheet.worksheet.a in \

{read,update,delete}): create;

 TRUE : spreadsheet.worksheet.a;

 esac;

next(spreadsheet.worksheet.table.a) :=

 case

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)\

& (spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \

(spreadsheet.worksheet.table.a in {update,create,delete}):

read;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)\

& (spreadsheet.a=update) & (spreadsheet.worksheet.a=update) &\

(spreadsheet.worksheet.table.a in {read,create,delete}):

update;

 (spreadsheet.role=spreadsheet.worksheet.role) &\

spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)&\

(spreadsheet.a=delete) & (spreadsheet.worksheet.a=delete) &\

(spreadsheet.worksheet.table.a in {read,create,update}):

delete;

 (spreadsheet.role=spreadsheet.worksheet.role) &

(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)

98

& (spreadsheet.a=create) & (spreadsheet.worksheet.a=create) &

(spreadsheet.worksheet.table.a in {read,update,delete}):

create;

 TRUE : spreadsheet.worksheet.table.a;

 esac;

next(spreadsheet.worksheet.cell.a) :=

 case

 (spreadsheet.role=spreadsheet.worksheet.role) &\

spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\

(spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \

(spreadsheet.worksheet.cell.a in {update,create,delete}):

read;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\

(spreadsheet.a=update) & (spreadsheet.worksheet.a=update) &\

(spreadsheet.worksheet.cell.a in {read,create,delete}):

update;

 (spreadsheet.role=spreadsheet.worksheet.role) &\

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.a=delete) & (spreadsheet.worksheet.a=delete) &\

(spreadsheet.worksheet.cell.a in {read,create,update}):

delete;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.a=create) & (spreadsheet.worksheet.a=create) &\

(spreadsheet.worksheet.cell.a in {read,update,delete}):

create;

 TRUE : spreadsheet.worksheet.cell.a;

 esac;

next(spreadsheet.worksheet.cell.formula.a) :=

 case

 -- hierarchy resolution

 (spreadsheet.role=spreadsheet.worksheet.role) &\

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.cell. \

formula.role) & (spreadsheet.a=read) & \

(spreadsheet.worksheet.a=read) & \

(spreadsheet.worksheet.cell.a=read) & \

(spreadsheet.worksheet.cell.formula.a in

{update,create,delete}): read;

99

 (spreadsheet.role=spreadsheet.worksheet.role) &\

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.cell. \

formula.role) & (spreadsheet.a=update) & \

(spreadsheet.worksheet.a=update) & \

(spreadsheet.worksheet.cell.a=update) & \

(spreadsheet.worksheet.cell.formula.a in

{read,create,delete}): update;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.cell. \

formula.role) & (spreadsheet.a=delete) & \

(spreadsheet.worksheet.a=delete) & \

(spreadsheet.worksheet.cell.a=delete) & \

(spreadsheet.worksheet.cell.formula.a in

{read,create,update}): delete;

 (spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role)&\

(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.cell. \

formula.role) & (spreadsheet.a=create) & \

(spreadsheet.worksheet.a=create) & \

(spreadsheet.worksheet.cell.a=create) & \

(spreadsheet.worksheet.cell.formula.a in

{read,update,delete}): create;

 TRUE : spreadsheet.worksheet.cell.formula.a;

 esac;

100

Appendix C. Example of ABAC4S Access Rules in JSON format

Examples of ABAC4S access rules defined in use cases are presented here in JSON format,

commonly used as message exchange format in enterprise IT systems.

Table 10. Developer access rules in JSON format

[

 {

 "user": "developer",

 "action": "create",

 "Worksheet.name":"Logbook",

 "environment": {

 "instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

 "Worksheet.name":"Dashboard",

 "environment": {

 "instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

 "Logbook.Table.name":"Logtable",

 "environment": {

 "instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

 "Logbook.Table.name":"MaintenanceStatus",

 "environment": {

 "instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

101

 "Logtable[#Headers]": [

 "Seq",

 "Date",

 "IP Address",

 "Status",

 "Group"

],

 "environment": {

 "instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

 "MaintenanceStatus[#Headers]": [

 "Date",

 "Win Passed",

 "Win In Progress",

 "Win Rejected",

 "Win Failed",

 "Linux Passed",

 "Linux In Progress",

 "Linux Rejected",

 "Linux Failed",

 "Network Passed",

 "Network In Progress",

 "Network Rejected",

 "Network Failed"

],

 "environment": {

 "Instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "create",

 "Logtable[[#Data],[Status]]": [

 "Passed",

 "In Progress",

 "Rejected",

 "Failed"

],

 "environment": {

 "Instance": "diary_logbook_dev"

102

 }

 },

 {

 "user": "developer",

 "action": "create",

 "Logtable[[#Data],[Group]]": [

 "Windows",

 "Linux",

 "Network"

],

 "environment": {

 "Instance": "diary_logbook_dev"

 }

 },

 {

 "user": "developer",

 "action": "read",

 "Worksheet.name":"Logbook",

 "environment": {

 "instance": "diary_logbook_prod"

 }

 },

 {

 "user": "developer",

 "action": "read",

 "Worksheet.name":"Dashboard",

 "environment": {

 "instance": "diary_logbook_prod"

 }

 }

]

Table 11. Manager access rules in JSON format

[

 {

 "user": "manager",

 "action": "update",

 "Worksheet.name":"NTC",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

103

 "user": "manager",

 "action": "update",

 "NTC.C17.backgroud_color":[

 "LightGrey",

 "LightGreen"

],

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "manager",

 "action": "update",

 "NTC.C18.backgroud_color":[

 "LightGrey",

 "LightGreen"

],

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "manager",

 "action": "update",

 "NTC.C19.backgroud_color":[

 "LightGrey",

 "LightGreen"

],

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "manager",

 "action": "read",

 "Worksheet.name":"Calculation",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 }

]

104

Table 12. Analyst access rules in JSON format

[

 {

 "user": "analyst",

 "action": "update",

 "Worksheet.name":"NTC",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "update",

 "TYPE(T1)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "update",

 "TYPE(T2)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "update",

 "TYPE(T3)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "update",

 "TYPE(R1)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

105

 "action": "update",

 "TYPE(R2)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "update",

 "TYPE(R3)":"Number",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 },

 {

 "user": "analyst",

 "action": "read",

 "Worksheet.name":"Calculation",

 "environment": {

 "instance": "ntc_calibration_prod"

 }

 }

]

Table 13. Administrator access rules in JSON format

[

 {

 "user": "administrator",

 "action": "update",

 "Worksheet.name":"NTC",

 "environment": {

 "operator": "AND",

 "criteria": [

 {

 "field": "instance",

 "operator": "=",

 "value": "ntc_calibration_prod"

 },

 {

 "field": "day",

 "operator": "=",

 "value": "Wednesday"

 }

]

106

 }

 },

 {

 "user": "administrator",

 "action": "update",

 "TYPE(Serno.value)":"String",

 "environment": {

 "operator": "AND",

 "criteria": [

 {

 "field": "instance",

 "operator": "=",

 "value": "ntc_calibration_prod"

 },

 {

 "field": "day",

 "operator": "=",

 "value": "Wednesday"

 }

]

 }

 },

 {

 "user": "administrator",

 "action": "update",

 "environment": {

 "operator": "AND",

 "criteria": [

 {

 "field": "instance",

 "operator": "=",

 "value": "ntc_calibration_prod"

 },

 {

 "field": "day",

 "operator": "=",

 "value": "Wednesday"

 }

]

 }

 },

 {

 "user": "administrator",

 "action": "print",

107

 "Worksheet.name":"NTC",

 "environment": {

 "operator": "AND",

 "criteria": [

 {

 "field": "instance",

 "operator": "=",

 "value": "ntc_calibration_prod"

 },

 {

 "field": "day",

 "operator": "=",

 "value": "Wednesday"

 }

]

 }

 }

]

CV

Miro Zdilar was born on 24th of June 1970 in Pula, Croatia. He finished elementary school

“Vladimir Nazor” in Križevci, and technical school “Ruđer Bošković” in Zagreb, Croatia. He

graduated in 1995 from the Faculty of Electrical Engineering and Computing of the University

of Zagreb with the thesis cro. “Analiza slike neuronskom mrežom” (eng. “Perceptron Neural

Network for Pattern Recognition”) and mentor Academic Professor Sven Lončarić, PhD. Miro

Zdilar continued his research and postgraduate studying at the Faculty of Electrical Engineering

and Computing of the University of Zagreb where he earned Master of Science degree in 2011

with the thesis cro. “Transakcijski protokoli za uslužno usmjerenu arhitekturu” (eng.

“Transaction protocols for service oriented architecture”) and mentor Academic Professor

Ignac Lovrek, PhD. During 2007 he enrolled in the in-company Master of Business

Administration (MBA) study program at Rotterdam School of Management Erasmus

University. He graduated in 2009 with the thesis “Intranet Knowledge Sharing-Implementation

of the GMP Training Reinforcement Pilot” and mentor Professor H.P. Borgman, PhD. During

2019 he enrolled in the postgraduate doctoral study of Information Science, at the Faculty of

Organization and Informatics of the University of Zagreb. He currently works as a Chief

Information Security Officer (CISO) at the Raiffeisenbank Austria dd, Zagreb. His fields of

interest are spreadsheet engineering, automated verification techniques and data analysis. He is

married and has two children.

List of scientific publications

[1] Miro Zdilar, “Model Checking Access Control Protocol for Spreadsheets”, Journal of

information and organizational sciences, Vol. 49 No. 1, (2025), 39-52.

https://doi.org/10.31341/jios.49.1.3

[2] Miro Zdilar, “Attribute Based Access Control Metamodel for Spreadsheet

Programs.” 35th International Scientific Conference CECIIS 2024. Varaždin: University

of Zagreb, Faculty of Organization and Informatics, 2024.

[3] Miro Zdilar, “Towards Automated Detection of Qualitative Spreadsheet Errors in Multi-

user Environments.” 34th Central European Conference on Information and Intelligent

Systems (CECIIS 2023), 2023.

[4] Miro Zdilar, “Transakcijski protokoli za uslužno usmjerenu arhitekturu.”, Dissertation

University of Zagreb. Faculty of Electrical Engineering and Computing. Department of

Telecommunications, 2011.

List of professional publications

[1] Miro Zdilar, “Revizija procesa razvoja sustava (SDLC)”, I. Konferencija internih revizora

“Razvoj i izazovi interne revizije”, Opatija, 2009.

