FACULTY OF ORGANIZATION AND INFORMATICS

Miro Zdilar

AUTOMATED VERIFICATION OF
SPREADSHEET PROGRAMS

DOCTORAL THESIS

Varazdin, 2025.

FAKULTET ORGANIZACIJE | INFORMATIKE

Miro Zdilar

AUTOMATSKA VERIFIKACIJA TABLICNIH
KALKULATORA

DOKTORSKI RAD

Varazdin, 2025.

DOCTORAL THESIS INFORMATION

I. AUTHOR

Name and surname

Miro Zdilar

Place and date of birth

Pula, June 24" 1970

Faculty name and graduation date

Current employment

Raiffeisenbank Austria dd, Zagreb

II. DOCTORAL THESIS

Title

Automated Verification of Spreadsheet

Programs

Number of pages, figures, tables,

appendices, bibliographic information

Pula, June 24" 1970

Scientific area and field in which the title

has been awarded

Social Sciences, Information and

Communication Sciences

Supervisor

Prof. Markus Schatten, PhD

Faculty where the thesis was defended

University of Zagreb, Faculty of

Organization and Informatics

Mark and ordinal number

II. GRADE AND DEFENSE

Date of doctoral thesis topic acceptance

April 9 2024

Date of doctoral thesis submission

Date of doctoral thesis positive grade

Grading committee members

Date of doctoral thesis defense

Defense committee members

Date of promotion

FACULTY OF ORGANIZATION AND INFORMATICS

Miro Zdilar

AUTOMATED VERIFICATION OF
SPREADSHEET PROGRAMS

DOCTORAL THESIS

Mentor: Prof. Markus Schatten, PhD

Varazdin, 2025

FAKULTET ORGANIZACIJE | INFORMATIKE

Miro Zdilar

AUTOMATSKA VERIFIKACIJA TABLICNIH
KALKULATORA

DOKTORSKI RAD

Mentor: Prof. Markus Schatten, PhD

Varazdin, 2025

to my wife, Melita
and our angels Dominik and Gita,
With love

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who supported my research and
made this thesis possible. At first and foremost, my supervisor, Professor Markus Schatten PhD,
played a pivotal role in conducting my thesis research. Thank you, Professor Schatten!

Special thanks go to my colleagues and friends for evaluating developed prototypes during
my research and all the energy and effort they put into explanation of their laboratory processes
and analytical measurements.

To all my friends for their encouragement to stay focused when I was exhausted and who
never ran away during my stories about spreadsheet development and verification.

I am eternally grateful for the support of my friend Miljenko KoSicek, whose memory will
forever motivate my work.

I would also like to thank my parents, who believed in me and encouraged me throughout
my graduate and postgraduate studies.

Finally, I am deeply grateful to my happy trio, especially to my wife Melita, for her
invaluable support, encouragement and understanding throughout this challenging research

journey. Without their patience and support, this thesis would never have been completed.

Abstract in English

Spreadsheets are widely used and can be considered as one of the most successful end-user
programming systems. End-user programming systems allow end-users to build and execute
powerful computer programs without the use of traditional programming languages and
supporting development tools. The combination of a visual grid, powerful built-in functions,
graphing capabilities, and user-friendliness makes spreadsheets an indispensable tool for
anyone needing to work with structured data. In enterprise environments, spreadsheets are
deeply integrated into core business operations. Their use extends beyond simple data entry to
underpin various business processes, particularly where data analysis, forecasting, and
decision-making are paramount. With recent technological advancements and new features
added, spreadsheets have become powerful computing platforms capable of complex analysis
and modelling. The spreadsheet research consistently demonstrates that spreadsheet errors are
omnipresent, with studies revealing error rates in a substantial percentage of models, ranging
from simple data entry mistakes to complex logical flaws in formulae. While there isn't one
universally adopted taxonomy of spreadsheet errors that supersedes all others, core distinction
between quantitative and qualitative errors remains central idea for research. Quantitative errors
directly lead to incorrect numerical values or logical flaws in the spreadsheet program direct
results. Qualitative errors do not immediately produce incorrect numerical values but represent
poor design practices, incorrect assumptions, or structural flaws that degrade the spreadsheet's
quality during the lifetime of spreadsheet. Qualitative errors increase the likelihood of future
quantitative errors, or make the spreadsheet difficult to understand, maintain, or debug. The
impacts of such errors can be severe, leading to flawed financial forecasts, incorrect scientific
analyses, misguided business decisions, legal liabilities, and even corporate collapses.

To address challenges associated with spreadsheet errors, research in spreadsheet quality
has focused on methods for finding (detection) and avoiding (prevention) spreadsheet errors.
Detection methods range from manual auditing and peer review to more sophisticated
techniques involving code analysis tools, testing-based techniques and data visualization for
anomaly detection. Prevention strategies emphasize best practices in spreadsheet design
including modularity, consistency with formatting and naming conventions and refactoring of
spreadsheet formulae with modern structured references and named objects.

In focus of this thesis is automated quality assurance for spreadsheets in multi-user
environments. Specifically, this thesis is structured around the novel ABAC4S (Attribute Based

Access Control for Spreadsheets) protocol designed for automated quality assurance of

spreadsheets in multi-user environments. Novel ABAC4S protocol for automated quality
assurance of spreadsheet programs uniquely addresses both methods in focus of quality
assurance research, finding (detection) and avoiding (prevention) of spreadsheet errors and
quality issues. As part of the research presented in this thesis, correctness of presented ABAC4S

protocol has been formally verified with model checking approach.

Keywords: Spreadsheets, Spreadsheet Errors, Attribute Based Access Control Protocol,
Unauthorized Spreadsheet Modifications, Model Checking

Abstract in Croatian

Tabli¢ni kalkulatori se koriste u raznim domenama ljudske djelatnosti i mogu se smatrati
jednim od najuspjesnijih programskih sustava za krajnje korisnike. Programski sustavi za
krajnje korisnike omogucuju im da grade i izvrSavaju slozene racunalne programe bez upotrebe
tradicionalnih programskih jezika i prate¢ih razvojnih alata. Tabli¢ni kalkulatori objedinjuju
ugradene funkcije za izvodenje kompleksnih izracuna i alate za vizualizaciju podataka.
Jednostavnost koristenja, intuitivno sucelje i mogucnost brzog rjeSavanja slozenih programskih
zadataka ¢ine tabli¢ne kalkulatore mo¢nim alatom za obradu podataka.

U poslovnim okruzenjima, tabli¢ni kalkulatori su nezamjenjiv alat za podrSku poslovnim
procesima. Posebno je znacajna uloga tabli¢nih kalkulatora u procesima predvidanja i
donoSenja poslovnih odluka na temelju velike koli¢ine raznorodnih podataka. Pojavom
modernih tabli¢nih kalkulatora temeljnih na racunalstvu u oblaku, tabli¢ni kalkulatori postali
su racunalne platforme sposobne za sloZene analize i modeliranje.

Istrazivanja i radovi temeljeni na razli¢itim aspektima razvoja i koriStenja tabli¢nih
kalkulatora dosljedno ukazuju na ucestalost pogresaka u tabli¢nim kalkulatorima, u rasponu od
jednostavnih pogreSaka kod unosa podataka do slozenih logickih pogresaka u formulama i
izraCunima. lako ne postoji univerzalno prihvacena taksonomija pogreSaka u tablicnim
kalkulatorima, jedna od Cesto koriStenih klasifikacija pogreSaka u tablicnim kalkulatorima,
razlikuje kvantitativne i kvalitativne pogreske kao temelj za daljnja istraZivanja. Kvantitativne
pogreske izravno utjeCu na neto¢ne numericke vrijednosti ili logi¢ke pogreske u trenutnim
rezultatima prikazanim u tabli¢nim kalkulatorima. Kvalitativne pogreSke ne utjecu na trenutni
prikaz podataka i rezultate u tablicnim kalkulatorima, ve¢ predstavljaju skup objedinjenih
pogreSaka koje su rezultat loSeg dizajna, neto¢nih pretpostavki koriStenih u razvoju
programskog modela ili strukturne nedostatke koji smanjuju kvalitetu tabli¢nih kalkulatora
tijekom cijelog Zivotnog ciklusa koriStenja. Kvalitativne pogreske povecavaju vjerojatnost
buducih kvantitativnih pogreSaka 1 negativno utjeu na odrZavanje ili ispravljanje pogresSaka u
tablicnim kalkulatorima. Posljedice takvih pogreSaka u tablicnim kalkulatorima mogu
uzrokovati nepouzdane financijske izvjestaje, neto¢ne znanstvene analize 1 krivo donoSenje
poslovnih odluka koje u kona¢nici mogu uzrokovati potpuni kolaps i bankrot organizacija.

Recentna istrazivanja u podrucju tablicnih kalkulatora usredotoena su na metode
pronalazenja 1 izbjegavanja pogreSaka. Metode detekcije pogreSaka temelje se na manualnim 1
automatskim metodama za otkrivanje pogreSaka. Manualne metode objedinjuju revizije

tablicnih kalkulatora i testiranja koje provode eksperti iz razli¢itih poslovnih podrucja.

Automatske metode detekcije pogresaka temelje se na alatima za analizu koda i tehnikama za
vizualizaciju i1 otkrivanje anomalija u podacima i izracunima. Preventivne metode za
izbjegavanje pogreSaka temelje se na primjeni najboljih praksi u dizajnu i razvoju tablicnih
kalkulatora, ukljucuju¢i modularnost u dizajnu kompleksnih izracuna, te koriStenje novih
funkcionalnosti i programskih jezika u modernim tabli¢nim kalkulatorima.

Istrazivanje prezentirano u ovom radu temelji se na metodi automatiziranog osiguranja
kvalitete tabli¢nih kalkulatora u visekorisnickim okruzenjima. Konkretno, ovaj rad prikazuje
koncept i strukturu novog protokola ABAC4S (engl. Attribute Based Access Control for
Spreadsheets) za automatizirano osiguranje kvalitete tablicnih kalkulatora u visekorisnickim
okruzenjima. Novi ABACA4S protokol za automatizirano osiguranje kvalitete programa
tablicnih kalkulatora objedinjuje obje metode u fokusu istrazivanja kvalitete tabli¢nih
kalkulatora: metode pronalaZenja (detekcije) i metode izbjegavanja (prevencije) pogresaka u
tablicnim kalkulatorima. U sklopu istrazivanja prezentiranog u ovom radu, konceptualni model

ABACA4S protokola formalno je verificiran metodom provjere modela (engl. Model Checking).

Kljuéni pojmovi: tabli¢ni kalkulatori, pogreske u tablicnim kalkulatorima, kontrola pristupa

temeljena na atributima, metoda provjere modela

Contents

LSt OF FIZUIES ..evveeiiieiieeie ettt ettt ettt et e et estaeeabeesaeeenbeessaeensaessaeenseensnesnsaas I
LSt OF TADIES....c.eeeutiiiieeiieee ettt ettt ettt et be e et naeen v
| A A Ne3 () 11 4 TSRS \Y
Spreadsheet Terms and CONCEPLS.......vvieriieeiiieeiieecieeetee et e e ree e eee et e e s reeesreeesbeeessseeeens VI
1. Research MethodOIOZYccciiiiiiieiiiieiie e eere e e aae e e 1
2. Introduction and MOtIVALIONcoouiiiiieiiieiieeie ettt sttt e et esaeeens 4
3. Related WOTK ...ttt et 9
3.1. Taxonomy of Spreadsheet EIrTors.........ccocevviriiriiiiniiiniiiinicecicseceeeceecse e 9
3.2. Automated Detection of Spreadsheet Errors.........ccocveevieiieniiiiiienieeiienieeieeeeens 13
3.3, Access Control for Spreadsheets..........ccocuieiieeiierieiiiieiecicce et 15
3.3.1. Discretionary Access Control (DAC)cccoeeoveerieiciieiieeiierie et 15
3.3.2. Mandatory Access Control (MAC)c.cooieeiierieiiieiieeieesee et seveevee e e 16
3.3.3. Role-Based Access Control (RBAC)ccuvveiieeiiieeieeeeeeeeeeee e 16
3.3.4. Attribute-Based Access Control (ABAC)ccuveeiieeiiieeieeeeeeeeeeee e 16

4. ABACAS ProtOCO]. ..ottt 18
4.1. ABACA4S Protocol Service SpecifiCationcccervererrieniineeiienieneeieeeeseeeieneene 18
4.2, ABACAS Protocol EnvIironmentccccueviuienieiiiienieeiiesie et 18
4.3. ABACAS Protocol Data Modeloocueeiiiiiiiiiieiieieeeeeeee e 19
4.3.1. Spreadsheet Conceptual Model...........ccooeiiiiiiiiiiiiiiiiiieiee e 19
4.3.2. ABACAS Protocol Access RUIES.........cceoveviriiiniiniiiiiieniecicsceeeeseee e 26
4.3.3. ABACA4S Protocol Algebraic Representationccccceevveeeiieeniienienieenieeneeens 27
4.3.4. Spreadsheet Resources as Direct graph..........ccceeevcvieeiiieeiiieeriieeieeeie e 28

4.4, ABACA4S Protocol Sequence DIagramsccceeecvveeriieeiiieenieeeiiee e 30
4.5. ABACA4S Protocol Access Rules Encodingcccoeecvvieiiiieiiieeiiieeieeeeeeeee e 32
4.6. ABACAS Protocol Processing LOZICcccvveviiieriiieiiieeiee e 36

4.6.1. Generating Direct Graphs for Spreadsheet States............ccocevvviriiienieniiieniene, 37

4.6.2. Conflict Resolution for Access RUlescccocevieniiiiiiiniiiiieeccceceee 39
4.6.3. Determination of Changes Between Two Spreadsheet Statescccceeeveennnn. 42

5. MoOdel ChECKING.....ccuvieiiiiiiiiiie ettt ettt ettt e et e s b e ebeesaaeenbeessseenseesssaens 49
6. Model Checking the ABAC4S ProtoCol........coouveiiiiiiiiiiiciieeieeteee et 51
7. Spreadsheet QUality ASSUTANCE.ccueeeiuiieieiieeeiieeeieeeeteeesieeesaeeeseaeeeeeeesreeeeseeesaseeesns 57
7.1. Spreadsheet Quality Modelc..ooocuiiiiiiiiiiieee et 57
711, FUNCHONAIIEY ...ttt sttt et ea 58
7120 REHADIIEY coeeiiiiecieee ettt ettt et 59

T 130 USADIIILY couveeitiiieiecceeee ettt sttt 60

R B N B i 1103 1<) T OO P RSP SOURRPRRPO 61
7.1.5. Maintainabilityccceeiiiiiiiieiiecieeiieeie ettt ettt re et e eestae b e naaa e 62

T 1.6, POTTADILIEY ...eveeiieciiieeiie ettt ettt et e be et e eab e e snaeenbaeeana e 63

7.2. Automated Spreadsheet Quality ASSUTANCEcc.eeevevieeriieeiiieeiieeeiee e 64

8. ABACAS Protoco]l USE CaSEScccueriiiriiiiiiiiieeiteeiie ettt ettt sttt st e 67
8.1. IT Administrator LOgbooKcc.ooviiiiiiiiiiiieeee e 67
8.2. Calibrations of Sensors in Analytical Laboratoryc.cceccveeevvieenieeniieeeieeeieeene 73
8.3. Users’ Satisfaction with ABACA4S Protocol.........cooiiriiiiiiiiiiniiiieiceeeeeee 80

9. Conclusion and Further Researchcoocuiiiiiiiiiiiiiee e 84
RETEICIICES ...ttt ettt ettt e e bt e st e e bt esaeesnbeenseeeaneas 88
APPENDIXES ...ttt ettt ettt sttt et 93
Appendix A. Structured Tables Referencescoecvveiiiiiieiiieiiiieeieeeeee e 94
Appendix B. SMV SoUICE COAEooiiiiiiiiiieiiieiieeieee ettt ettt s 95
Appendix C. Example of ABACA4S Access Rules in JSON format.........cccccccevveneeneniennnne 100

II

List of Figures

No. Figure name Page
Figure 1. Reseach Methodology based on Design Science Research..........ccccoeeevvveeiieeneennee. 1
Figure 2. Conceptual model of spreadsheet resources and associated attributes. 20
Figure 3. Example of 3D referencing in Excel Spreadsheet.cccoooveviieiiiiniiiniiniicee 24
Figure 4. Spreadsheet formula conceptual model.ccccoeiiiiiiiiniiiiiiniecee e 25
Figure 5. ABACA4S protocol access rules for spreadsheets.ccceevveeecieeeiieeecieecieeeieeens 26
Figure 6. Spreadsheet resource graph node.coceoieviiiiniiiiniiiiiieececeeeseeeene 29
Figure 7. Single root path property for spreadsheet resources.ccoeevvevveecieereeecieeneeeneenne. 30
Figure 8. Sequence diagram for preventive mode of ABAC4S protocol implementation. 31
Figure 9. Sequence diagram for detective mode of ABAC4S protocol implementation. 32
Figure 10. Example of spreadsheet graph at state Sj.........ccoovvivininiiinininiiniiiiie, 37
Figure 11. Directed graph representation of spreadsheet at state Sjooovviriiinininininininnen, 38
Figure 12. Example of spreadsheet graph at state Sjyq...cooviviviiiniiininininiiiiiie, 38
Figure 13. Directed graph representation of spreadsheet at state Sjyq..oovvviiiiniiininiiiiininnen, 39
Figure 14. Visualized transition between two Sraphscoeeveeviiniininienienenieneenecienene 47
Figure 15. CTL path and temporal OPErators.ccueeeevueriiriiiienieneeeeeseete e 50
Figure 16. Hierarchy of spreadsheet resources as SMV language modules.ccccveeeneee. 52
Figure 17. Spreadsheet quality model............coovieeiiiiiiiiieeeeeeee e 58
Figure 18. Logbook WOTKSRhEet.........cocoviiiiiiieiieeeeeee e 72
Figure 19. Dashboard WOrksheet............ccceoiiiiiiiiiiiiiiiiiec e 73
Figure 20. NTC WOTKSNEELcoeiiiiiiiiiiiiieeceee ettt 79
Figure 21. Calculation WOrkSheEet...........ccovuiiiiiiiiiiieeiieeee et 80

III

List of Tables

No. Table Name Page
Table 1. Taxonomy of SPreadSheet ETTOTSc.eeeevieieiieeciie ettt ree e 10
Table 2. Microsoft Excel errors and ERROR. TYPES () returned values.coovvvvumeeeeeeeenen. 35
Table 3. Algorithm RESO1VECONT I ciiiiiiiiiiieiieiieeieeeiie ettt ettt seeeeteesaaeenbeesseeeneeas 41
Table 4. Mapping between GED operations and ABACA4S actions...........cccceeeveerieecieenneennen. 46
Table 5. Example of mapping between GED and ABAC4S actionsceccevveevvenienenciennene 48
Table 6. Summary of spreadsheet QA approachescccoeceeiiiiiiiniiiiiesee e, 65
Table 7. Positive user experience with ABACA4S protocolcceceeviiiiieniiiiienieeesieeee, 82
Table 8. Negative user experience with ABACA4S protocol..........coceevieeiieniiiiieniieieieeen, 83
Table 9. Structured Tables References........cocueviiiiiieiieriiiieneeeeeeee e 94
Table 10. Developer access rules in JSON fOrmat........ccocccveeieeriieniieiiieniieenieeie e 100
Table 11. Manager access rules in JSON formatc.cooeeviiriiniiiiniinnceeeseeenen 102
Table 12. Analyst access rules in JSON format............coceeviiiiniininiinicnnceeeeeeen 104
Table 13. Administrator access rules in JSON format.........ccccoecevieiinieninienienceeseeeeen 105

v

List of Acronyms

A*GED
ABAC
ABACA4S
ACL
COM
CTL
DAC
DF-GED
DLL
DSR
ECMA
ERP
EuSpRIG
FLAME
GED
IEEE
ISO
JSON
LLM
MAC
NIST
NTC
QA
RBAC
SDLC
SpACE
UML
VBA
XLS
XLSX
XML

A-Star Graph Edit Distance
Attribute-Based Access Control
Attribute-Based Access Control for Spreadsheets
Access Control List

Component Object Model

Computation Tree Logic

Discretionary Access Control

Depth-First Graph Edit Distance

Dynamic Link Library

Design Science Research

European Computer Manufacturers Association
Enterprise Resource Planning

European Spreadsheet Risks Interest Group
Formula Language Model for Excel

Graph Edit Distance

Institute of Electrical and Electronics Engineers
International Organization for Standardization
JavaScript Object Notation

Large Language Model

Mandatory Access Control

National Institute of Standards and Technology
Negative Temperature Coefficient

Quality Assurance

Role-Based Access Control

Software Development Life Cycle

Spreadsheet Auditing for Customs and Excise
Unified Modeling Language

Visual Basic for Applications

Microsoft Excel Format Spreadsheet File

Microsoft Excel Open XML Format Spreadsheet File

Extensible Markup Language

Spreadsheet Terms and Concepts

To ensure consistency of the research presented in this thesis, key spreadsheet terms and
concepts are defined. More detailed and comprehensive insights into other spreadsheet terms

and concepts are provided in later chapters of this thesis.

Spreadsheet Resource

Key concepts presented in this research relate to representation of spreadsheets as a
collection of spreadsheet resources. Intentionally, the term Resource is used in contrast to the
terms Object or Entity to avoid misinterpretation with Object Oriented Programming or
Relational Database Systems. Modern spreadsheets programming resembles many concepts
typically associated with Object Oriented Programming; however, spreadsheet resource should
not be perceived as object in Object Oriented Programming. Spreadsheet resources are a more
generic term representing multiple spreadsheets building components that are available to users
either as built in functionality within modern spreadsheets or custom spreadsheet resources that

users can construct with multiple different programming paradigms and tools.

Spreadsheet Program

Spreadsheet program consists of all spreadsheet resources utilized by spreadsheet users to
solve user’s problem. Most commonly, spreadsheet programs are constructed with built-in
spreadsheet calculation directives and data that are needed to properly specify spreadsheet
formulae. Some spreadsheet programs are simple one-time calculations, while others are used
for complex tasks and computational modeling. Enterprise spreadsheet programs are developed

to support organizational processes and support collaborative work of many spreadsheet users.

Spreadsheet Application

Spreadsheet application is a commercial application (like Microsoft Excel, Google Sheets,
or LibreOffice Calc) supporting development and execution of spreadsheet programs. Modern
cloud-based spreadsheet applications can be considered as powerful spreadsheet runtime
environments empowering users to develop spreadsheet programs with multiple programming
languages. One of the most popular spreadsheet applications is Microsoft Excel that can be used

either as a standalone application or powerful cloud-based spreadsheet application.

VI

Spreadsheet

In context of this research thesis, the term spreadsheet is used to represent union of
spreadsheet applications and spreadsheet program. Spreadsheet is a commercial spreadsheet
application executing user’s spreadsheet programs. Even though users can build their own
graphical user interfaces to interact with their spreadsheet programs, in most cases powerful

built in spreadsheet application interface is utilized for interaction with spreadsheet programs.

Spreadsheet Formula Language

A spreadsheet formula language is a specialized programming language used within
spreadsheet applications to construct spreadsheet programs, perform calculations and
manipulate data. While often considered simpler than general-purpose programming languages,
modern spreadsheet formula languages are very powerful, and they can theoretically simulate
any computer algorithm. The recent addition of LAMBDA function in Microsoft Excel allows
users to define reusable functions with recursions and function composition, making Excel a
functional programming environment. Regardless of popularity, commercial vendors have
never published official and concise grammar to facilitate parsing and analysis of spreadsheet
formula language. One of the most complete grammar specifications of spreadsheet formula

language has been published by Aivaloglou et al. [51].

Spreadsheet Error

According to the IEEE Standard Classification for Software Anomalies [52] an “error” is a
misapprehension on side of the one developing a software caused by a mistake or misconception
occurring in the human thought process. A “fault” is the manifestation of an “error” within a
software which may be causing a “failure”. A “failure” is the deviation of the observed behavior
of the software from the expectations. However, researchers and spreadsheet practitioners are
not consistent with IEEE Standard Classification for Software Anomalies [52] and “fault” and
“error” are often used as synonyms. This research thesis will continue with tradition of many
spreadsheet researchers and if not specifically written, term “error” will be used as synonym

for “error” or “fault”.

VII

1. Research Methodology

The research methodology in this thesis follows the Design Science Research (DSR)
approach [35]. Activities and phases conducted during defined research methodology are

visually represented in Figure 1.

Environment IS Research
Unmet Research
and Business
Needs
>
MNeed for automated .
quality assurance for | (‘reLpvance)
spreadsheets in multi- ~ Werify
user environments Correciness
< »
Application to
Multi-user
Environments ABAC4S o
Quality
Assurance (VERIFICATION) Model
Knowledge Base Protocol I Checking
for
Applicable Spreadsheets
Knowledge <
> Confirm
Related work in —
automated quality (" rRicor)
assurance for S~
spreadsheets
<
Additions to the
Knowledge
Base

Figure 1. Reseach Methodology based on Design Science Research

DSR methodology is structured around three interconnected components or research phases
that should jointly deliver design science research artefacts. Specifically, the application of DSR
methodology to the research presented in this thesis resulted in the following method and
research phases:

e Environment: The environmental part of the Design Science Research methodology
has been defined in the Introduction and Motivation chapter of this thesis. In addition
to the presented spreadsheet horror stories, automated quality assurance methods for
finding (detection) and avoiding (prevention) spreadsheet errors have been presented.
Two use cases with application of developed ABACA4S protocol for automated quality
assurance of spreadsheets in multi-user environments have been demonstrated in this

research thesis.

e Knowledge Base: This research journey has started with comprehensive literature
review to understand existing knowledge base, as well as challenges and opportunities
required to deliver effective Design Science Research artifacts. Specifically, literature
review and discussions in this thesis have been focused on taxonomy of spreadsheet
errors, automated detection of spreadsheet errors and controlled access for spreadsheet
users in modern enterprises. Based on the existing knowledge base and literature review
conducted, automated quality assurance for spreadsheets has been identified as active
research domain with unmet research needs for finding (detection) and avoiding
(prevention) spreadsheet errors in multi-user environments. Furthermore, design
considerations for design science research artifact derived from existing knowledge
base have been combined with requirements to address unmet research and business
needs for automated quality assurance of spreadsheet programs in multi-user
environments.

e IS Research: Information System Research part of methodology represents a core set
of research activities presented in this thesis. Main deliverable of this research phase is
novel ABACA4S protocol for automated quality assurance of spreadsheets in multi-user
environments. The formal specification of novel ABAC4S protocol for spreadsheet will
be provided with multi-faceted approach and combination of visual modeling,
specification of protocol building blocks with algebraic data structures and direct graph
representation. As part of the ABAC4S protocol specification, algorithm to detect and
resolve conflicts between ABACA4S access rules is presented and formally evaluated for

correctness with model checking approach.

Aligned with the Design Science Research approach and requirements to develop novel
ABACA4S automated quality assurance protocol for spreadsheets in multi-user environments,

the first research goal for research presented in this thesis has been formulated:

e RGI: Develop formal description of ABACA4S protocol for automated quality assurance
of spreadsheets, capable of controlling user’s interaction with spreadsheets in multi-user

environments.

Research focused on formal description of ABACA4S protocol for automated quality
assurance has been inspired by conceptual model for measuring complexity of spreadsheets

[48] and spreadsheet representation as collection of resources [6]. The first research goal is the

basis for the second research goal, in that it provides specifications of the ABAC4S protocol
for automated quality assurance of spreadsheets that can be formally verified. The next step in
research presented in this thesis is evaluation of ABAC4S protocol correctness with a model

checking approach, which leads to second research goal:

e RG@G2: Evaluate correctness property of the proposed ABAC4S protocol for automated

quality assurance of spreadsheets with model checking approach.

To address the second research goal, ABACA4S protocol for automated quality assurance of
spreadsheets will be modeled as a system with a set of states and transition relations that specify
the behavior of the system. Aligned with the above research goals, the following research

hypothesis is formulated:

e HO: ABACA4S protocol for automated quality assurance of spreadsheets in multi-user

environments, correctly evaluates spreadsheet state changes for given user’s roles.

NuSMV model checker has been utilized to verify correctness property of the proposed
ABACA4S protocol for automated quality assurance of spreadsheets in multi-user environments
[25]. The selection of the NuSMV model checker has been primarily driven by the richness of
supported SMV language and its capability to specify hierarchical SMV modules that
correspond to the natural hierarchy of spreadsheet resources. Model checking tool explores all
possible traces in search of counterexample where desired property formulated with research

hypothesis is not satisfied.

Research presented in this thesis followed an iterative approach through experimentation,
simulation and model checking to refine outcomes of the research phases and fine tune
characteristics of developed ABAC4S protocol. Initial results of the ABAC4S protocol
verification with model checker and provided counterexamples were instrumental for ABAC4S
protocol redesign, including refinements of rules and algorithm for conflict resolution within

set of user’s access rules.

2. Introduction and Motivation

Spreadsheets are structured around a powerful and intuitive graphical user interface
represented as collections of two-dimensional grids. Each two-dimensional grid is a collection
of cells, uniquely identified by address represented with row and column index within the
respective grid. Spreadsheet computation capabilities are constructed with formulae placed in
cells depending on user’s need and spreadsheet program functionality. Spreadsheet
computations are event based, and changes introduced by an actor into the spreadsheet program
are immediately evaluated and computed. Spreadsheet actors are users working interactively
with spreadsheets or external systems capable of accessing spreadsheet programs through
interfaces. Commercial spreadsheets have a broad range of embedded formulae and support
various mechanisms for building extensions such as user defined formulae, customizations of
the spreadsheet interface and embedding new computational modules constructed with external
procedural, object oriented or functional programming languages.

Spreadsheets are widely used and can be considered as the most successful end-user
programming systems. End-user programming systems allow end-users to build and execute
powerful computer programs without the use of traditional programming languages and
supporting development tools. It has been estimated that the number of end-user programmers
outnumber traditional software programmers [1]. Spreadsheets are used in almost all companies
in the US and Europe [2]. Modern enterprises use spreadsheets to support key processes such
as capacity planning, financial reporting, stakeholder analysis, risk management, performance
calculation, data transformation, cash-flows analysis, time-series transformations and
simulations [3]. The European Spreadsheet Risk Interest Group (EuSpRIG), a non-profit and
voluntary organization maintains a list of horror stories that illustrate problems with
uncontrolled usage of spreadsheets [5]. The following are summaries of several spreadsheet
horror stories that caused reputational and financial impacts on individuals, organization and

institutions.

16000 UK Covid-19 test results lost for weeks

The issue in this case is that PHE’s (Public Health England) own developers picked an old
file format to develop spreadsheet program — known as XLS. Consequently, each template
could handle only about 65000 rows rather than the one million-plus rows that Excel is actually

capable of. When the limit of an old file format was reached, further cases were simply left off.

To handle the problem, PHE is now breaking down the test result data into smaller batches to

create a larger number of Excel templates.

Scientists rename human genes to stop Microsoft Excel from misreading

The bioinformatics community decided it was easier to change gene symbols than changing
peoples' habits. When scientists want to process numerical data, spreadsheets are often used to
import/export numerical data and perform further analysis. Uncontrolled process for numerical
data formatting and data type designation, caused wrong data type inference and unwanted data

transformations.

Unofficial spreadsheets land Italian pharma plant with regulatory warning

Regulatory warning was issued to Italian pharma company due to the use of “unofficial”

and uncontrolled spreadsheet on a shared network drive.

The Norwegian Sovereign Wealth Fund's $92 Million Excel Error

In 2024, Norway's sovereign wealth fund revealed that it had lost roughly $92 million, on
an error relating to how it calculated its mandated benchmark. Calculation error was discovered
in the composition of the index, because an incorrect date was manually entered in the

spreadsheet.

Excel formula error inflated myocarditis statistics

According to UK National Health Service, the initial claim of 8% of people affected by
heart issues have been corrected to 0,01%, due to excel formula error that occurred during the
process of simplifying the data into a pivot table. The value that was displayed was the sum
total of a numeric value within the raw data, specifically a row count, as the years progressed
the row count increased meaning the sum was greater. The value displayed should have been a

count and not a sum.

Spreadsheet error led to Edinburgh hospital opening delay

Human errors in spreadsheet with the specification for air flow in critical care rooms have
been discovered prior to hospital opening day. Independent checks found that critical care
rooms were operating with the wrong air flow. Remedial work to correct identified spreadsheet

error with the wrong air flow has been estimated to 16 million GBP.

Private data leakage in spreadsheet “hidden” column

Global aerospace firm Boeing reported in 2017 that a company employee mistakenly
emailed a spreadsheet full of employee personal data to his spouse. The spreadsheet, sent to
provide the employee’s spouse with a formatting template, contained the personal information
of roughly 36,000 other Boeing employees, including Social Security numbers and dates of

birth, in hidden columns.

Spreadsheet error costs Tibco shareholders $100M

Tibco Software shareholders will be getting $100 million less than originally anticipated
from the company’s more than $4 billion sale to Vista Equity Partners because of a spreadsheet
error that overstated Tibco’s equity value. According to a regulatory filing, Goldman Sachs,
which is advising Tibco on the deal, used the spreadsheet in calculating that Tibco’s implied

equity value was about $4.2 billion.

$1.1 Billion “Honest Mistake” error in financial result statement

Fannie Mae, the mortgage company, made a $1.1 billion mistake in a spreadsheet during
adoption of new accounting standards. Fannie Mae senior vice president for investor relations,
said: “There were honest mistakes made in a spreadsheet used in the implementation of a new

accounting standard.”

Ticket mishap at the London 2012 Olympics

Booking tickets for the 2012 Olympic games in London was done in rounds. Thousands of
tickets were unclaimed when second-round ticket sales of the synchronized swimming
competition began. After realizing something was off, it was revealed that an employee for the
ticketing company made the simple mistake of typing “2” instead of “1”, resulting in 20000
seats going on sale instead of 10000. Fortunately, this error was identified early on and those
who purchased tickets to what essentially amounted to non-existent seats were able to exchange
them for other events within the games. Some customers even saw this as a blessing in disguise;
they were upgraded from their original purchase and ended up attending higher profile

competitions which would not have been possible otherwise.

MI5 makes 1,061 bugging errors

UK secret intelligence MI5 wrongly bugged more than 1000 phones. MI5 stated that a
spreadsheet formatting error caused formatting to be applied on telephone numbers ending in
000 rather than the actual last three digits.

Research consistently demonstrates that spreadsheet errors are omnipresent, with studies
revealing error rates in a substantial percentage of models, ranging from simple data entry
mistakes to complex logical flaws in formulae. Based on research into spreadsheet errors,
several taxonomies have been developed over time to classify different types of errors. While
there isn't one universally adopted taxonomy that supersedes all others, researchers like Panko
[10] and Rajalingham [12] classified spreadsheet errors into qualitative and quantitative errors.
Quantitative errors directly lead to incorrect numerical values or logical flaws in the spreadsheet
program direct results. Qualitative errors do not immediately produce incorrect numerical
values but represent poor design practices, incorrect assumptions, or structural flaws that
degrade the spreadsheet's quality during the lifetime of spreadsheet. Qualitative errors increase
the likelihood of future quantitative errors, or make the spreadsheet difficult to understand,
maintain, or debug. The impacts of such errors can be severe, leading to flawed financial
forecasts, incorrect scientific analyses, misguided business decisions, legal liabilities, and even
corporate collapses [4].

To address challenges associated with primarily qualitative spreadsheet errors, research in
spreadsheet quality has focused on methods for finding (detection) and avoiding (prevention)
spreadsheet errors. Detection methods range from manual auditing and peer review to more
sophisticated techniques involving code analysis tools, testing-based techniques and data
visualization for anomaly detection. Prevention strategies emphasize best practices in
spreadsheet design including modularity, consistency with formatting and naming conventions
and refactoring of spreadsheet formulae with modern structured references and named objects.

Furthermore, the development and application of formal quality frameworks and system
development methodologies for spreadsheets follow proven and established development
principles from general software engineering practices. These frameworks promote structured
approaches during the whole life cycle of spreadsheet programs, with robust version control,
user validation, static and dynamic testing, and the implementation of internal controls.

Based on existing knowledge base and literature review conducted, automated quality
assurance for spreadsheets is active research domain with unmet research needs for qualitative
spreadsheet errors in multi-user environments. Research presented in this thesis will define

novel ABACA4S protocol for automated quality assurance of spreadsheet programs. Novel

ABACA4S protocol for automated quality assurance of spreadsheet programs uniquely addresses
both methods in focus of quality assurance research, finding (detection) and avoiding
(prevention) of spreadsheet errors and quality issues. The formal specification of novel
ABACA4S protocol for spreadsheet will be provided with multi-faceted approach and
combination of visual modeling, specification of protocol building blocks with algebraic data
structures and direct graph representation. A multi-faceted approach allows clear
communication of research deliverables to thesis readers and other researchers focused on
exciting research related to spreadsheets. As part of the ABAC4S protocol specification, novel
algorithm to detect and resolve conflicts between ABAC4S access rules is presented and
formally evaluated for correctness with model checking approach. Detailed steps and research
journey from original ABAC4S protocol idea to formal specification of the protocol in
applicable model checking language is presented in this thesis. Finally, as part of the research
presented in this thesis, the use cases of ABAC4S protocol evaluation within IT department and
analytical laboratory are presented with documented ABAC4S access rules derived from

organizational processes and users job descriptions.

3. Related Work

The tremendous success of spreadsheets and impact of spreadsheet errors triggered
significant interest of the research community. In this thesis, I followed approach to literature
review presented by Powell et al. [11]. Rather than give a chronological account of the literature
on the spreadsheet research, discussion in this thesis is focused on taxonomy of spreadsheet
errors, automated detection of spreadsheet errors, and controlled access for spreadsheet users

in modern enterprises.

3.1. Taxonomy of Spreadsheet Errors

Understanding types of spreadsheet errors is an important aspect of spreadsheet research

and key to effective detection and prevention of spreadsheet errors.
Early studies listed types of errors detected without classification of spreadsheet errors. Brown
and Gould [7] conducted reviews and experiments with volunteers experienced with
spreadsheet use and development. As a part of the experiment, volunteers had to complete three
tasks and create three different spreadsheets according to the instructions. Authors measured
time required to complete the tasks, accuracy and visual appearance of final solution. An
interesting part of this experiment was the use of a key logger [8] that recorded keystrokes of
participants during the experiment and allowed insights to user behavior during completion of
given tasks. Regardless of the limited number of participants, the experiment identified errors
in formulae, mistyping, rounding and logical errors.

Galetta et al. [9] introduced two classes of spreadsheet errors. Authors distinguished
between domain errors and device errors. The domain refers to the spreadsheet application area
(e.g., accounting), while the device refers to the spreadsheet technology itself. For example, a
mistake in logic due to a misunderstanding of depreciation is a domain error, but entering the
wrong reference in the depreciation function SLN is a device error. Authors conducted an
experiment with thirty accounting experts and thirty students to seek up to two errors introduced
in each of six spreadsheets used during experiment. While accounting experts performed better
in detection of domain errors, students demonstrated comparable performance in detection of
device errors.

In one of the first attempts to offer a complete classification of errors, Panko and Halverson
distinguished between quantitative and qualitative errors [10]. Quantitative errors are related to
the current version of the spreadsheet, while qualitative errors refer to risky practices that might

lead to an error in later stages of a spreadsheet’s lifecycle. Panko and Halverson further divided

quantitative errors into three subcategories: (i) mechanical errors, due to mistakes in typing or
pointing, (ii) logic errors, due to choosing the wrong function or creating the wrong formula,
and (ii1) omission errors, due to misinterpreting the situation to be modeled. In critics of the
above presented classification, Powell at al. [11] noted that this proposed classification does
not consider context of spreadsheet use and how each error was committed.

The taxonomy of errors for spreadsheets developed by Rajalingham et al. [12] is one of the
first attempts that introduced different spreadsheet user roles. Hierarchical view of taxonomy

of errors for spreadsheets developed by Rajalingham et al. [12] is presented in Table 1.

Table 1. Taxonomy of spreadsheet errors

A. SYSTEM-GENERATED
B. USER-GENERATED
a. QUANTITATIVE
i. ACCIDENTAL
1. DEVELOPER (workings)
a. Omission
b. Alteration
c. Duplication
2. END -USER
a. DATA INPUTTER (Input)
1. Omission
1. Alteration
iii. Duplication
b. INTERPRETER (output)
1. Omission
ii. Alteration
iii. Duplication
ii. REASONING
1. DOMAIN KNOWLEDGE
a. REAL-WORLD KNOWLEDGE
b. MATHEMATICAL REPRESENTATION
2. IMPLEMENTATION
a. SYNTAX

10

b. LOGIC

C. QUALITATIVE

a. SEMANTIC
1. STRUCTURAL
ii. TEMPORAL
b. MAINTAINABILITY

This taxonomy is focused on user-generated errors and differentiates between developer

and end-user errors. End-users are further classified as data inputter and interpreter. However,

the given taxonomy classifies quantitative accidental errors as omission, alteration or

duplication, without taking into consideration the possible errors caused by unauthorized

changes in multi-user environments. Quantitative errors directly lead to incorrect numerical

values or logical flaws in the spreadsheet program direct results. Sub-categories of quantitative

spreadsheet errors often include the following:

Mechanical Errors: Simple slips or mistakes, such as typos, incorrect data entry, or
incorrect cell references due to pointing errors.

Logic Errors: Flaws in the underlying reasoning or formula construction, where the
formula itself is incorrect for the intended calculation. Examples of logical errors are
using the wrong spreadsheet function, incorrect parameters during function invocation,
incorrect operator, or flawed algorithm.

Omission Errors: Omission errors occur when required data or calculation formulas are
accidentally left out, leading to incomplete or inaccurate results. This can also include
misinterpretation of the problem to be modeled.

Accidental Errors: Accidental errors occur as result of user’s negligence, stress or
oversight, often leading to immediate issues with spreadsheet programs.

Reasoning Errors: Reasoning errors stem from wrong or flawed users understanding of

the problem or the spreadsheet's functionality, leading to incorrect intentions or actions.

Qualitative errors do not immediately produce incorrect numerical values but represent poor

design practices, incorrect assumptions, or structural flaws that degrade the spreadsheet's

quality during the lifetime of spreadsheet. Qualitative errors increase the likelihood of future

quantitative errors, or make the spreadsheet difficult to understand, maintain, or debug. Sub-

categories of qualitative spreadsheet errors often include the following:

11

Structural Errors: Structural errors represent non-compliance or gaps to spreadsheet
development standards or best practices. Typical structural errors found in spreadsheets
are flaws in the design or layout of the model, incorrect or ambiguous labeling, poor
formatting, or issues that make the spreadsheet hard to navigate or understand. Hard-
coding numbers directly into formulae instead of referencing named reference is a
common example.

Temporal Errors: Temporal errors relate to using outdated or non-current data. One
additional challenge when spreadsheet programs output questionable data is
inappropriate use of volatile functions in Microsoft Excel spreadsheet. Volatile
functions update dynamically whenever Excel recalculates, even if no changes are
introduced to the spreadsheet program. This includes functions like TODAY (), NOW (),
RAND (), RANDBETWEEN (), and certain versions of CELL (), OFFSET(),
INDIRECT (), and SUMIF () depending on their arguments. The resulting value of the
volatile functions cannot be assumed to be the same from one moment to the next even
if none of its arguments (some functions do not require input arguments) have changed.
In addition to frequent cause of temporal errors when used inappropriately, volatile
functions might cause degradation in spreadsheet performance due to frequent
recalculations. For example, the use of function TODAY () in a cell will always display
the current date in a cell and will update to tomorrow’s date if the spreadsheet is opened
tomorrow. In contrast, the use of function DATE (2025, 06, 09) in a cell will
always show June 09, 2025 (depending on cell formatting), regardless of when the
spreadsheet is opened or recalculation is triggered by user. It is important to note that
system time information used for date functions in spreadsheets is primarily derived
from device’s clock and time settings in case of standalone spreadsheet applications and
from browser settings in case of cloud-based spreadsheets.

Maintainability Errors: Maintainability errors stem from overcomplex spreadsheet
programs and design issues that make the spreadsheet difficult to update, audit, or
maintain in the future.

Semantic Errors: Semantic errors occur when a spreadsheet program's code is correct
from a syntax standpoint but produces unpredictable or incorrect results due to flaws in

the underlying algorithm or logic.

12

While there isn't one universally adopted taxonomy of spreadsheet errors that supersedes
all others, core distinction between quantitative and qualitative errors remains central idea for
research. Recent upgrades to spreadsheet error taxonomies tend to offer more granular

description and sub-classifications for quantitative and qualitative errors.

3.2. Automated Detection of Spreadsheet Errors

An automated method to infer data types from a spreadsheet was presented by Erwig and
Burnett [16]. The proposed method for inferring types from spreadsheets is based on the
concrete notion of units instead of the abstract concept of types. Authors used header
information given by spreadsheets to derive units. In continuation of the presented concept
around units, Ahamd et al. developed a type system for statically detecting spreadsheet errors
[17]. The authors named the proposed model “unit checking” and presented a collection of rules
that help identify weaknesses in spreadsheets that are likely to be errors. This model also relies
on the concept of the header that defines common units for grouped cells. The working
prototype based on the proposed model was developed for a specific version of Microsoft Excel
spreadsheet application using the UCheck tool [18]. Authors validated performance of the
UCheck tool in an experiment conducted with high school teachers [19]. Results of this
experiment indicated that the tool effectively supports users in error correction.

High incidents of spreadsheet errors have led to a series of commercial software packages.
Nixon and O’Hara provided structured assessments of several commercial auditing tools [20].
The test was designed to identify the success of software tools in detecting different types of
errors, to identify how the software tools assist the auditor and to determine the usefulness of
the tools. The assessment conducted by Nixon and O’Hara included the built-in auditing tool
in Microsoft Excel spreadsheet [20]. Excel’s built-in formula auditing tool supports
visualization of spreadsheet formulas and error checking generated as result of formula
evaluation. As of today, Microsoft Excel will notify users with the following errors as result of

invalid formula evaluation:

e #DIV/0

o #N/A

o #NAME?
e #NULL!
o #NUM!
e #REF!

13

e #VALUE!
o #GETTING DATA
e Anything else (returns #N/A)

Due to the constant innovation in spreadsheets, the above list will have to be reviewed and
updated to match new functionalities in recent versions of commercial spreadsheets. For
example, introduction of lambda function in the latest development version of Microsoft Excel
spreadsheet allows users to generate custom reusable functions and use recursions without the
need of external programming languages. Recursions in lambda formula will require review
and potential redesign of existing formula evaluation errors.

Aurigemma and Panko conducted a study to evaluate two commercial spreadsheet static
analysis tools, both with each other and human auditors [37]. Overall results of automated static
analysis tools did not outperform human auditors. The 33 human inspectors found 54 out of 97
errors, while only 5 errors were tagged by two commercial tools. These results cannot be
generalized to wider context of spreadsheet use and all stages of spreadsheet lifecycles.
However, results presented, and overall performance of automated static analysis tools
indicated direction for future research.

In the second study, the auditing procedure used by HM Customs and Excise was described
by Butler [38]. This procedure is hybrid and includes manual activities performed by expert
auditors, as well as automated activities performed with commercial software tool (SpACE).
The procedures work as follows. First, the auditor identifies the chain of cells from inputs to
end result and uses the software tools (SpACE) to follow the chain of dependent cells so that
the key formulas can be checked. Then the auditor checks the original formulas that were used
to copy related formulas, and checks that the copies are correct. Main contribution of automated
software tool used in this procedure is to speed up the overall review process and assist human
auditor with high-risk cells.

In addition to research related to automated error detection, important to note is the work of
Abraham and Erwig related to automation of spreadsheet testing [21]. The authors followed the
original concept of mutation testing for general purpose programming languages and developed
mutation operators for spreadsheets that allow generation of test cases.

Spreadsheets allow users to arrange data and metadata freely in a human readable format.
To extract their content with automated tools, data practitioners need to perform manual
inspections and data preparations. The Mondrian system assists users with detection of

multiregion layout templates in spreadsheets [36]. Mondrian comprises an automated approach

14

to detect multiple data regions and an algorithm to compute layout similarity and identify
templates with potential spreadsheet errors.

Recent spreadsheet research is focused on the application of large language models to
improve spreadsheets quality. A team of researchers from Microsoft Corporation developed the
FLAME language model for spreadsheet formulae [22]. FLAME uses the Microsoft Excel
specific formula tokenizer and other techniques to achieve competitive performance with a
substantially smaller model (60 million parameters) and training dataset, compared to other
large language models such as Codex. Researchers used a training dataset of 972 million
formulas extracted from a corpus of 1,8 million Excel workbooks. FLAME was evaluated on
three different tasks for Excel formulas: last-mile repair, autocompletion and syntax
reconstruction. The presented FLAME language model outperformed larger language models,
such as Codex-Davinci (175 billion parameters), Codex-Cushman (12 billion parameters), and

CodeTS5 (220 million parameters), in 6 out of 10 experimental settings [22].

3.3. Access Control for Spreadsheets

Access control and authorization are key components of information technology systems in
multi-user environments [23]. Focus of researchers have been around modelling different
access control systems, evaluation and comparison of access control models deployed to
various technical and operational environments, and formal verification of access control
models in context of specific algorithms and protocols. Following is the summary of common
access control models that have been analyzed for their suitability in development of access

control protocol for spreadsheets [39].

3.3.1. Discretionary Access Control (DAC)

Discretionary Access Control (DAC) is access control model built with three major
components — objects, subjects, and permissions. DAC allows owners (subjects) to control
permissions to their objects and is commonly implemented with Access Control List (ACL).
DAC is implemented as an integral part of many information technology systems, such as
operating systems and databases. DAC has been part of commercial spreadsheet
implementation for decades and allows spreadsheet owners to control user’s access to specific
cells or worksheets. Downs et al. [40] studied issues with DAC, and this type of access control

does not allow granularity for different roles, centralized administration with access policy and

15

monitoring data flow becomes almost impossible as the spreadsheet program grows in

complexity.

3.3.2. Mandatory Access Control (MAC)

Mandatory Access Control (MAC) is access control model managed in centralized manner
and is built with four key components — a set of objects, a set of subjects, permissions, and
security level. Even though MAC allows centralized policy management, it is very complex to
implement this type of access control on all spreadsheet resources due to mandatory security
level assigned to both subjects and objects. In addition, security levels specified in traditional
MAC have been considered by researchers as antiqued [41]. Due to mandatory security level
for subjects and objects, MAC is very complex for implementation and does not fit to technical

and organizational dynamics of modern enterprises.

3.3.3. Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is access control model based on following key
components — subjects, roles, permissions, actions, operations, and objects. In context of
RBAUC, role means a group of permissions to use object(s) and perform certain action(s). Only
designated administrators have the right to control system security and manage roles assigned
to users. RBAC implementation has been studied in hospital management where roles allow
modeling complex relationships between doctors, nurses, and other hospital stakeholders [42].
However, modeling and maintaining roles for different spreadsheet user roles and groups is
very complex, especially in dynamic organizations where business processes and corresponding

user roles are rapidly changing.

3.3.4. Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC) is access control model based on following three
types of dynamic attributes — subjects, objects, and environments. User requests are resolved
and determined based on subject attributes, objects attributes, environmental attributes as well
as set of conditions specified by access policy. ABAC model is dynamic as it uses state of

attributes at the time of access mode resolution.

Even though limited literature on the application of ABAC access control model to

spreadsheets has been found, following ABAC access control model properties have been

16

instrumental for development of ABAC4S protocol for automated quality assurance of
spreadsheets in multi-user environments:

e ABAC model is based on dynamic attributes, where object attributes fit to our proposed
model of spreadsheet resources and corresponding attributes.

e Hierarchy of spreadsheet resources and objects can be modelled with set of ABAC
conditions and access rules determinations. This property prevents conflicts in access
resolutions and simplifies prototype implementation.

e Deployment opportunities for ABAC with spreadsheets are flexible and allows early
prototype implementation as detective access control system. This minimizes impact on
users and their interaction with spreadsheet interface.

e Complexity of ABAC model for spreadsheets depends on number of spreadsheet
resource attributes.

e Dynamic nature of modern cloud-powered spreadsheets and extensions to spreadsheet
formula language fits nicely to ABAC dynamic attribute concept. Potential new
functionalities and modules added in cloud-powered spreadsheet can be integrated

within existing ABAC concepts.

Unified metamodel of enterprise authorizations is summarizing existing models of access
controls [23]. In addition, authors provided mapping between presented unified metamodel and
ArchiMate tool that is frequently used in modern enterprises as architecture modeling language.
List of generic metamodels for expressing different configurations of access models has been
valuable starting point for this research and design of ABAC metamodel for spreadsheets.

ABAC modelling and implementation has been recognized by U.S. government as
important access control modelling concept for large enterprises and federal information
technology systems. National Institute of Standards and Technology (NIST) published in 2014
Special Publication 800-162 “Guide to Attribute Based Access Control (ABAC) Definition and
Considerations” [24]. This publication provides definitions and considerations for using ABAC
to improve information sharing and design of systems, while maintaining control of that
information. Concepts and terminology for ABAC presented in this document have been

instrumental for design of automated quality assurance for spreadsheets presented in this thesis.

17

4. ABACA4S Protocol

ABACA4S protocol is designed to control unauthorized activities on spreadsheets in multi-
user environments. The core idea of the proposed protocol revolves around spreadsheet
representation as a collection of resources [6]. In modern cloud-based spreadsheets, resources
are building blocks manipulated with a native spreadsheet formula language or custom
computational modules constructed with external programming languages. Spreadsheet
resources and their attributes are bound by ABAC4S rules and allow granular control of
resource states during a spreadsheet’s lifecycle. The ABAC4S protocol specification consists
of six distinct parts [27]:

1. The Service to be provided by the protocol
The Assumptions about the environment in which the protocol is executed
The Data Model used for protocol implementation
The Sequence Diagrams with data flows during protocol execution

The Encoding (format) of ABAC4S protocol access rules

AN O i

The Processing Logic of ABACA4S protocol, including algorithm for resolution of
conflicts within access rules and determination of spreadsheet changes between
different spreadsheet states. These rules guard the consistency of data flows and

correctness of Service provided by the ABAC4S protocol.

4.1. ABACA4S Protocol Service Specification

The ABACA4S protocol is defined on the conceptual level of modern cloud-based
spreadsheets and is agnostic form specific commercial implementations of spreadsheets. In
addition, ABAC4S protocol specifications provided in this paper are based on algebraic and
directed graph data structures and data flows suitable for translation to model checking tools
and verification of correctness for protocol rules. ABACA4S protocol for automated quality
assurance of spreadsheets should control evolution of spreadsheet programs according to user’s
access rules and structured criteria defined for spreadsheet resources. As such, ABAC4S
protocol is managing behavioral and structural quality criteria of spreadsheet programs defined

with access rules.

4.2. ABACA4S Protocol Environment

The environment in which the protocol is executed consists of the ABAC4S conceptual

model and four generic user roles typically found in multi-user environments: developer, tester,

18

analyst and manager. The ABACA4S protocol for automated quality assurance of spreadsheets
is not restricted to only 4 specified users and can be easily extended to unlimited number of
user roles depending on specific deployment needs. Four generic user roles are selected to limit
the complexity of the model and prevent state space explosion during model checking. The
ABACA4S protocol definition in this paper focuses on accurate and complete specification of
data flows and ABACA4S protocol processing logic, while implementation for protocol

execution on commercial spreadsheets is left for specific deployment scenarios.

4.3. ABACA4S Protocol Data Model

A data model refers to an abstract representation of data structures that are used to organize
and manage data in the proposed ABAC4S protocol for automated quality assurance of
spreadsheets. First, ABACA4S protocol building blocks have been defined with visual
conceptual models to facilitate communication and understanding of data requirements for
ABAC4s protocol. Class diagrams from Unified Modeling Language (UML) have been used
to define a modern cloud-based spreadsheet conceptual model as extension to spreadsheet
conceptual model introduced by Retschenhofer et al. [48]. UML class diagrams will be used to
define conceptual models of ABACA4S access rules with links to the associated set of
spreadsheet resource attributes. Based on provided visual conceptual models for spreadsheets,
further refinement of proposed conceptual model will be provided with directed graph
representation of spreadsheet resources. This combination of UML and directed graph
representation of spreadsheets is used in later stages of this research to perform formal
verification of proposed ABAC4S protocol and assess protocol correctness with model

checking approach.

4.3.1. Spreadsheet Conceptual Model

Conceptual models of spreadsheet resources and associated attributes are visually presented

in Figure 2. and Figure 4.

19

Spreadsheet > Add-in o VisualObject
1 0.* .
Spreadsheet Attrs Add-in_Attrs VisualObject Attrs
¢
1 1 T 1
Worksheet 1 0= Table
| .
- Table Attrs
Worksheet Attrs
1 0..*
1
0.* 1 ‘ 1.*
NamedObject Cell
0..* 1 0..*

NamedObject Attrs @——— Cell Attrs

| "]
ValueCell LabelCell
ValueCell Attrs LabelCell_Attrs

—

Formula InputData

Formula Attrs InputData Attrs

Figure 2. Conceptual model of spreadsheet resources and associated attributes.

Design considerations in proposed ABAC4S protocol are structured around resources that
constitute modern cloud-powered spreadsheet. Spreadsheet resources are building blocks for
spreadsheet programs and are manipulated by spreadsheet users or change their state during
lifecycle of spreadsheet as result of spreadsheet program execution. Spreadsheet resources and
their attributes are bounded with ABAC4S rules and permissible actions performed by
spreadsheet users. The following provides a description of key spreadsheet resources and

corresponding classes in spreadsheet conceptual model diagrams:

e The class Spreadsheet represents spreadsheet program. This is the root class and container
in the presented metamodel for other spreadsheet resources. Spreadsheet programs that are
instantiated from this class are stored in proprietary file formats on personal computers. The
most popular format used by Microsoft Excel is Microsoft Excel Open XML Format
(XLSX). It's an Extensible Markup Language (XML) file format based on ECMA-376
Office Open XML standard [45]. XLSX file format uses standard ZIP compression to store

data in a more efficient and accessible way, readable on different operating systems and

20

computer architectures. XLSX offers better data integrity, improved compatibility, and a
more structured approach to data storage compared to the older XLS file format.

The class Worksheet represents a blueprint for instantiating worksheets. Worksheets are a
primary working area and key resource within each spreadsheet represented as a two-
dimensional collection of cells organized into rows and columns. In modern cloud-based
spreadsheets, worksheets are containers for other spreadsheet resources, such as visual
objects, tables and other custom-built resources such as user defined functions or
computational modules constructed with external programming languages. Depending on
spreadsheet user preferences, worksheets can be used as scoping boundaries for custom user
defined functions and named objects.

The class NamedObject represents various resources in modern spreadsheets that are
controlled by users through Named Manager functionality. This naming convention is used
in Microsoft Excel 365 product, but other cloud-based spreadsheets offer similar
functionality. In modern cloud-based spreadsheets, class NamedObject represent all
spreadsheet resources constructed with either composition of internal spreadsheet functions,
or with external programming languages. With the recent introduction of LAMBDA functions
and collection of supporting functions (MAP, REDUCE, SCAN, MAKEARRAY,
BYROW, BYCOL, ISOMITTED), Microsoft Excel is additionally empowered for
computational tasks previously reserved for plugins or scripting with embedded macro
language [43]. Great demonstration of new Microsoft Excel capabilities and powerful
development strategies with custom user defined functions based on Excel formulas has
been provided by Bartholomew at EuSpRIG conference [44]. Customized user’ spreadsheet
resource created as instance of NamedObject class can be scoped to broader spreadsheet
workbook or limited to the worksheet. Reusable software components built with external
programming languages are tightly integrated into modern spreadsheets, empowering
spreadsheet users to develop models quicker with fewer errors [46]. For example, the new
=PY () function introduced in Microsoft Excel spreadsheet acts as a bridge, letting users
write Python code directly in Excel cells [47]. Python in Excel is compatible with existing
tools and libraries for charting and numerical analysis. Among many exciting new features
that Python in Excel offers to users is the ability to create and dynamically control complex
tabular and visual objects directly from python code. This functionality was previously

available only through Excel predefined toolbar.

21

The class Add-in represents an external program that extends the functionality of the
spreadsheet with new features and commands. Resources created as instance of Add-in class
are the oldest mechanism available in spreadsheets for building custom extensions.
Microsoft popularized Add-ins in early versions of Excel with proprietary architectures
based on Dynamic Link Library (DLL) and Component Object Model (COM). COM is
specification for creating reusable software components that can interact with each other.
Traditional Add-ins built on COM specifications are bound to client versions of Excel
spreadsheets and must be installed separately. In modern spreadsheets, lambda functions
are essential for the creation of reusable software components, empowering spreadsheet
developers to develop models quicker with fewer errors [46]. Another new feature added to
Excel is native support for Python programming language [47]. Powerful Python
computational engine is embedded in Excel and users can integrate Python language code
with existing formula language at the level of cell. Python in Excel is compatible with
existing tools and libraries for charting and numerical analysis. Among many exciting new
features that Python in Excel offers to users is the ability to create and dynamically control
complex tabular and visual objects directly from python code. This functionality was
previously available only through Excel predefined toolbar.

The class Table represents Excel named table resources that could be added to the worksheet
through spreadsheet application interface. However, after manual creation of named table,
this spreadsheet resource can be controlled directly from spreadsheet formula language with
structured references. Microsoft introduced structured references as part of named tables
functionality in Excel 2007. These references, which use column names instead of cell
references in formula language, were a key feature of the new named table format.
Structured references are powerful extensions to formula language and allow spreadsheet
users to reference custom tables in their entire code, with improved readability and
maintainability of spreadsheet programs.

The class VisualObjects represents spreadsheet visual objects that could be added to the
worksheet through spreadsheet application interface. These graphs and charts are visual
representations of worksheet data that help to illustrate trends, pinpoint patterns, and make
comparisons within data. All commercial spreadsheets include countless options for
generating charts and graphs, including bar charts, line charts and other more complex data
visualization techniques. Charts and graphs are powerful spreadsheet tools and help

communicate clearly and efficiently, especially for large and complex data sets.

22

The class Cell represents key spreadsheet resource and smallest unit of data storage in a
spreadsheet. A cell is a single rectangular area where data is entered and stored, formed by
intersection of a column and a row. In commercial spreadsheets there are two ways for
referencing cells. In A1 Reference Style, cells are referenced using a combination of a
column letter and a row number, such as Al, B1, or D10. Relative cell references change
during copy operation to other cells. For example, if Al cell reference is copied from
original location to new location with relative distance of 1 column and 1 row to original
cell location, the new cell reference will be B2. Spreadsheet formula language uses special
syntax to control absolute and relative cell references. Dollar sign ($) is used to fix the row
or column, preventing cell reference from changing when copied or filled. For example,
$AT1 fixes column A, and A$1 fixes row 1 during copy of filling operation. Absolute cell
reference, immune to changes during copying and filling operations, is achieved with A1
cell reference. There's also an alternative, R1C1 Reference Style, where cells are referenced
by row and column numbers preceded by "R" and "C" respectively, for example, R1Cl1,
R2C1, or R10C4. Relative cell referencing for R1C1 Reference style is achieved with
numbers in square brackets to indicate the offset from the current cell. For example,
R[1]C[1] refers to the cell 1 rows below and 1 column to the right of the cell containing the
formula. Negative numbers indicate moving up or left, and positive numbers indicate
moving down or right. A1 Style Reference is preferable cell reference style for majority of
spreadsheet users. However, R1C1 Style reference offers several advantages, particularly
when working with relative cell references and formulas that are intended to be copied or
filled. For example, a formula like R[-1]C[-1] (one row above and one column to the left)
will remain the same when copied across multiple rows or columns. This contrasts with A1l
Style Reference, where cell references might change based on the new cell's position.
Additional benefits of R1C1 Style Reference can be useful when working with spreadsheet
macros and Visual Basic for Applications (VBA) where cells are manipulated
programmatically. Ranges are rectangular collection of cells defined by the cell reference
of the top-left cell and the cell reference of the bottom-right cell separated by colon. For
example, A1:C2 is a range containing 6 cells in total, with Al as top-left cell and C2 as
bottom-right cell. Spreadsheets allow 3D referencing to the same cell or range across
multiple worksheets within a single spreadsheet workbook. For example, cells Al on
worksheets named “Sheetl”, “Sheet2” and “Sheet3” can use a 3D reference, without having
to manually list each worksheet and cell in formula. Let’s say we have the following data

in spreadsheet workbook:

23

Worksheet “Sheet1”: Cell Al contains value “Banana”
Worksheet “Sheet2”: Cell Al contains value “Apple”
Worksheet “Sheet3”: Cell Al contains value “Orange”
To list values from each worksheet cell A1l in first column of worksheet “Sheet4”, we can

use the following 3D reference as parameter to excel function TOCOL () :

=TOCOL (Sheetl:Sheet3!Al)

The TOCOL () function in Excel converts a multi-column array or 3D reference into a single
column as visually presented in Figure 3. It takes an array, and optionally, arguments to
ignore certain values or to scan by column. The function is useful for flattening data

structures and organizing information into a more manageable format.

=TOCOL(Sheetl:Sheet3!Al)
| b | E

Sheetl = Sheet? | Sheetd | ELEES

Figure 3. Example of 3D referencing in Excel Spreadsheet.

Spreadsheets allow cross-worksheet reference within formula or function in one worksheet
that uses data or values from another worksheet within the same workbook. Cross-
worksheet referencing creates dynamic links between cells or ranges across worksheets, so
changes in one worksheet will automatically update in the other. For example, cross-
worksheet reference =Sheet1!A1 would refer to cell Al on Sheetl within the current
spreadsheet workbook. As visually represented in metamodel in Figure 2., cells instantiated
from class Cell might be of the type ValueCell or LabelCell. “Labeled cells” refers to cells
that are used for identification of structured data, such as named tables or column headers.

“Value cells” in presented metamodel might be of type Formula or InputData. “Input data

24

cells” generally refers to individual cells in a worksheet that contain the raw data being
analyzed. These cells hold the raw information that spreadsheet programs used for
computation and might be entered either manually by users or populated by automatic
spreadsheet interfaces. The conceptual model for spreadsheet formula is presented in Figure

4.

Function

F 1
ormuia Function Attrs

Formula Attrs

1 Operator
Operator_Attrs

: 1

SubExpression Literal

Expression [<+— .
* P Literal Attrs

Expression_Attrs

0..1 NamedObject
ParentExpression NamedObject Attrs
Reference
Reference Attrs
i
SingleReference RangeReference NamedReference
SingleReference Attrs | | RangeReference Attrs NamedReference Attrs

Figure 4. Spreadsheet formula conceptual model.

The class Expression represents powerful spreadsheet formula language ability for nesting
formulas. The original design introduced by Retschenhofer et al. has been extended to
include NamedObject as parameters and NamedReference as one possible realization of cell
references [48]. As represented in the provided conceptual model, expressions are
constructed with functions, operators, literals, named objects and references. Expressions
might also be composed of other expressions, thus allowing spreadsheet users to model

complex computational problems.

25

4.3.2. ABACH4S Protocol Access Rules

The conceptual model of ABAC4S protocol access rules is visually represented in Figure 5.

Environment Subject SpreadsheetResource

Enviornment Attrs Subject Attrs SpreadsheetResource Attrs
1.* 0..* l.*
Defines ! {) EvaluatesTo

Access Control 1 L*1 Access Rule AccessMode

Policy SubRule 1 1

* 0..1 2
ParentRule
Preventive Detective
ValueType: Permits | Prohibits ValueType: Valid | Non-valid

Figure 5. ABACA4S protocol access rules for spreadsheets.

The class AccessRule represents the key entity in ABAC4S protocol access rules. Each
access rule instantiated from AccessRule class is composed of associated spreadsheet
resource(s), subject(s) to which the access rule applies, and environment attributes that
allow dynamic environmental conditions with ABACA4S access rules. For example, with
environment attributes, ABAC4S protocol allows specification of different access rules for
development, testing and production environments of spreadsheet programs. Other
examples of environmental conditions include time, location, threat level, or temperature
[6].

The class AccessMode represents mode of operations for ABAC4S protocol. Practically,
this means that ABAC4S protocol can be deployed in real use case scenarios as preventive
or detective protocol. In preventive use case implementation, ABAC4S evaluates each user
action and spreadsheet resource change before the action is recorded in spreadsheet

application. As a result of access mode resolution in preventive mode of operation,

26

ABACA4S protocol proactively permits or prohibits spreadsheet state changes. In detective
use case implementation, ABAC4S evaluates each user’s action and spreadsheet state
transition after the change has been recorded in spreadsheet. As a result of access mode
resolution in detective mode of operation, ABAC4S protocol can only log and determine
for each resource state transition validity of change according to access rules. These modes
of operations are modeled in Figure 5. with Preventive and Detective classes. In general,
preventive modes of operations are preferable in information systems, however practical
implementation of preventive mode of operations is far more complex than detective mode
of operation.

e The class SpreadsheetResource represents link to associated set of spreadsheet resource
attributes. Simple and consistent naming convention has been utilized during development
of ABACA4S protocol, where set of attributes are represented with suffix _Attrs concatenated
to Class name that represents spreadsheet resource. For example, a set of attributes
associated with class Worksheet is represented in model as Worksheet Attrs. Depending on
nature and number of modeled spreadsheet resource, corresponding attributes are
represented with enumerated lists or key-value HashMap. For example, attribute type for
InputData is represented with enumerated list /Boolean, Integer, Number, String, Date,
Array]. Attribute name for Worksheet is represented with key-value dictionary

{ “Worksheet.name”: “First Sheet”} [48].

4.3.3. ABAC4S Protocol Algebraic Representation

Spreadsheet stages during lifecycle phases are modelled with finite sequence of state

transitions as follows:

ASo(MU) _ AS;(MU) _ AS,(MU)
So S1 S,) ey Se. (1)

where S, is the initial state of the spreadsheet (“first creation”), S, is the final state of
spreadsheet (“end of lifecycle™), AS;(MU) are transitions between spreadsheet states caused by

modifications M of user U on spreadsheet resources SR.

U € [developer, tester, analyst, manager]. (2)

27

Modifications M are determined by comparing affected spreadsheet resource at states 5.4

and §;. Transitions AS;(MU) are modeled as triplets with the following structure:
AS;(MU) = (U, M, SR;). 3)

In the proposed ABACA4S protocol vocabulary, access rules are modelled as quadruples

with the following structure:
(U, A, SR, E). (4)

A is a set of actions that user might perform on spreadsheet resource represented with

following enumerated list:
A € [CREATE,READ,UPDATE, DELETE]. (5)

These actions are usually denoted with the CRUD acronym. The proposed ABAC4S
protocol is not limited to four CRUD actions, and if needed in specific deployment scenarios,
the number of actions could be reduced or extended.

SR represents a set of spreadsheet resources and corresponding resource attributes on which
user U can perform action A.

E are dynamic environmental conditions, independent of the users and the spreadsheet

resources that may be used as attributes at decision time to influence an access decision.

4.3.4. Spreadsheet Resources as Direct graph

Direct graph representation of spreadsheet resources effectively defines hierarchical nature
of spreadsheet resources. Each spreadsheet resource is modeled as a node in direct graph
representation of spreadsheets. Edges modeled as directed arrows represents hierarchical “has-
a” relationships between spreadsheet resources. This type of relationship between spreadsheet
resources implies that hierarchically upper (parent) spreadsheet resource, “owns” or “contain”
other hierarchically lower (child) spreadsheet resources. Visually, spreadsheet resource SR as

a graph node is presented in Figure 6.

28

Child 1 Child 2 s e Child n

Figure 6. Spreadsheet resource graph node.

The following are definitions of important properties for directed graph representation of

spreadsheet resources.

Definition 1 (Single Parent Property):
Each spreadsheet resource represented as a node in direct graph representation of the

spreadsheet resources has one (and only one) parent node.

Definition 2 (Root Node):
Spreadsheet node is the root parent node in direct graph representation of spreadsheet
resources, without parent node. All other spreadsheet resources are hierarchically lower nodes

or child nodes related to spreadsheet root parent node.

Definition 3 (Single Root Path):
Each spreadsheet resource represented as a node in direct graph representation of the

spreadsheet resources has one (and only one) unique path to spreadsheet root parent node.

Visually, single root path property is presented in Figure 7.

29

spreadsheet
J' h"-.

-

s F’ath 2
\ F’ath 1
<D @ D @ ‘
ﬂ s >
Figure 7. Single root path property for spreadsheet resources.

Example of spreadsheet representation with directed graph in Figure 7. has two
distinguished paths marked for formulal and formula?2 resources. Pathl is a unique single root

path for formulal and is determined with the following nodes:
spreadsheet — worksheetl — celll - formulal. (6)
Path?2 is a unique single root path for formula2 and is determined with the following nodes:

spreadsheet — worksheet2 — cell3 - formula2. (7)

4.4. ABACA4S Protocol Sequence Diagrams

A sequence diagram, in the context of presented ABACA4S protocol for automated quality
assurance of spreadsheets is a visual representation of the interaction between entities in a
system, focusing on the order and timing of messages exchanged. Specifically, a sequence

diagram provides a visual timeline of events within a system, making it easier to understand the

30

sequence of actions and messages exchanged between protocol entities. Sequence diagrams
used in this thesis are type of interaction diagram within Unified Modeling Language (UML)
specification. As already stipulated in conceptual model of rules, ABAC4S protocol can be
implemented as preventive or detective protocol. In preventive use case implementation,
ABACA4S evaluates each user action and spreadsheet resource change before the action is
recorded in spreadsheet application. Preventive mode of ABACA4S protocol implementation is

presented in Figure 8.

i ABACA4S Agent Spreadsheet

spreadsheet action

AS;(MU)

user action submitted | rejected |
Ll

action permited | prohibited

Figure 8. Sequence diagram for preventive mode of ABAC4S protocol implementation.

31

Spreadsheet ABACA4S Agent

->o

spreadsheet action

user' action detected

AS;(MU)

action valid | invalid

< ______________________________ e e

e
-]

Figure 9. Sequence diagram for detective mode of ABAC4S protocol implementation.

In detective use case implementation, ABAC4S evaluates each user’s action and
spreadsheet state transition after the change has been recorded in spreadsheet. Preventive mode
of ABACA4S protocol implementation is presented in Figure 9. In the above sequence diagrams,
ABACA4S protocol computational logic is presented with “ABAC4S Agent”. The goal is to
demonstrate that ABAC4S computational logic is independent and agnostic to commercial
spreadsheet applications. In practical deployment scenarios for ABAC4S protocol, “ABAC4S
Agent” could be implemented as add-in to commercial spreadsheets (such as Microsoft Excel
or LibreOffice Calc) installed on user’s personal computer or microservice for cloud-based

spreadsheets (such as Microsoft Excel Online or Google Sheets).

4.5. ABACA4S Protocol Access Rules Encoding

As already stipulated in ABAC4S protocol algebraic representation, access rules are
modelled as quadruples (4), where A is a set of actions that user might perform on spreadsheet
resource represented with enumerated list usually denoted with CRUD acronym (5). In addition
to controlling user’s action with access rules, ABAC4S protocol is designed to control structural
properties of spreadsheet resources SR. The following are structural rules defined for

spreadsheet resources.

32

Structural Rule 1: “Dot” notation is used to access specific resource attribute.
e Definition : Resource.attribute

e Example: Spreadsheet.name

Structural Rule 2: Chaining “Dot” notation is used to access specific resource attribute within
hierarchy of spreadsheet resources.
e Definition : Resource 1.Resource 2...Resource n.attribute

e Example: Spreadsheetl.Worksheetl.Input Celll.name

Structural Rule 3: Each spreadsheet resource is uniquely identified and addressed by its name.
Cells are uniquely identified and addressee either by name (assigned with Named Manger
functionality) or by unique address in A1l Reference style or R1C1 reference style. Standard
range notation with “:” operator is used to address ranges.

e Definition : Resource name_I.Resource name_1...Resource name_n.attribute

e Example: Spreadsheetl.Worksheetl.Al.name

Structural Rule 4: Structured table references are used to identify spreadsheet tables and
access whole tables, specific columns or intersection of columns and rows [50]. Complete

definition of structured tables references syntax is provided in Appendix A.

Structural Rule 5: “TYPE” function call for resource attribute determines attribute data type.
e Definition : TYPE(Resource.attribute)
e Example: TYPE (Cell.value)

ce__%

Structural Rule 6: Equal sign operator evaluates resource attribute to specific value
e Definition : Resource.attribute="attribute value”

e Example: Cell.value = “3,14”

Structural Rule 7: Optional values with one selected value out of predefined list of values are
specified with Pipe “” operator.
“Value 2

e Definition : Resource.attribute=["“Value 1" “Valuen’]

e Example: Cell.value = [”Banana” | ”"Apple” | ”Orange”]

33

Structural Rule 8: Predefined data types are Boolean, Integer, Number, String, Date, Tuple,
List, Set, Dictionary, Formula, NmedRange, Error.

e Definition : TYPE(Resource.attribute)=[“Boolean” | “Integer” | “Number” | “String”
“Date” | “Tuple” | “List” | “Set” | “Dictionary” | “Formula” | “NamedRange”
“Error”]

e Example: TYPE (Cell.value)="Boolean”

It is important to note that error types might differentiate significantly between commercial
spreadsheet applications. In the latest version of Microsoft Excel spreadsheet, error types can
be evaluated with built-in excel function ERROR. TYPE (). This function returns a number
corresponding to one of the error values in Microsoft Excel or returns the #N/A error if no error
exists [49]. In typical implementation, ERROR.TYPE () is used in combination with IF ()
function to test for an error value and return a text string, such as a message, instead of the error

value. ERROR. TYPE () function is called with following syntax:

= ERROR.TYPE(Error_val)

Where Error val is required parameter whose identifying number will be determined
according to Table 2. presented below. Although Error val can be the actual error value, in
typical implementation this will be a reference to a cell containing a formula or formula itself

passed as nested parameter to function.

34

Table 2. Microsoft Excel errors and ERROR . TYPES () returned values.

Error_val ERROR.TYPE returns
#NULL! 1
#DIV/0! 2
#VALUE! 3
#REF! 4
#NAME? 5
#NUM! 6
#N/A 7
#GETTING_DATA 8
Anything else #N/A

Structural Rule 9: For Integer, Number, and Date data types “less than” operator “<” checks
if resource attribute value is less than value specified on right side of operator.
e Definition : Resource.attribute < “Less_than_value”

e Example: Cell.value < ”3,14”

Structural Rule 10: For Integer, Number, and Date data types “greater than” operator “>”
checks if resource attribute value is greater than value specified on right side of operator.
e Definition : Resource.attribute > “Greater than value”

e Example: Cell.value > ”3,14”

Structural Rule 11: Logical AND operation in functional form might be used for evaluation
of multiple criteria for identical spreadsheet resource. Multiple criteria should be separated with
comma “,” sign.

e Definition : AND(Criterial, Criteria?, ..., Criteria2)

e Example: AND (Cell.value > “0”, Cell.name="Sallary”)

Structural Rule 12: Logical OR operation in functional form might be used for evaluation of
multiple criteria for identical spreadsheet resource. Multiple criteria should be separated with
comma “,” sign.

e Definition : OR(Criterial, Criteria2, ..., Criteria2)

e Example: OR (TYPE (Cell.value)="String”, Cell.name="Sallary”)

35

Structural Rule 13: Pattern matching for character combinations in strings is supported with
regular expressions. “REGEX” function call with resource attribute passed as parameter checks
for pattern matching. Regular expression patterns are provided on the right side of expressions.
e Definition : REGEX(Resource)="regex pattern”
e Example: REGEX (Celll.value)=""\d{5} (?:[-\s]\d{4}) 28"

In the above example of pattern matching, regex pattern for US zip code is used to check if

Celll.value contains valid US zip code.

Structural Rule 14: Operations in functional form might be nested and composed with
unlimited complexity and nesting depth. The only reasonable limitation is readability of final
structural rule.
e Definition : /OR | AND]([OR | AND]([OR | AND](Criteria_1, ..., Criteria_n)))
e Example: AND (TYPE (Cell.value)= ”String”,
OR (Cell.value="Banana”, Cell.value="Apple”))

4.6. ABACA4S Protocol Processing Logic

The Processing Logic of ABAC4S protocol for automated quality assurance of spreadsheets
controls evolution of spreadsheet programs according to ABAC4S protocol access rules and
structured criteria defined for spreadsheet resources. ABAC4S protocol controls two quality
assurance criteria defined with protocol access rules; first behavioral criteria specified with
user’s roles and actions, and second structural properties of spreadsheet programs with set of
structural rules specified on granular level of spreadsheet resources that constitute spreadsheet
program. ABACA4S processing logic is divided into three consecutive processing steps that are
executed for each spreadsheet state transition during spreadsheet lifecycle stages. During the
first step of ABACA4S protocol processing logic, direct graph hierarchical representation of
spreadsheet resources is generated. During the second step, resolution of potential conflicts for
graph representation of spreadsheet resources and defined access rules is determined to ensure
correct ABACA4S processing. During the last and third step of ABACA4S protocol processing
logic, direct graphs representing two consecutive spreadsheet states are compared to determine

transition AS;(MU) between spreadsheet states S; and S;, ; during spreadsheet lifecycle. Based

on all identified modifications to affected spreadsheet resources, ABAC4S protocol compares

36

actions and spreadsheet resource modifications with defined access rules and determines
validity of spreadsheet transition between corresponding states. In continuation of this thesis,

comprehensive description for each ABACA4S protocol processing step is defined.

4.6.1. Generating Direct Graphs for Spreadsheet States

During the first step of ABACA4S protocol processing logic, for each spreadsheet lifecycle
state S; and S;,4, direct graph with hierarchical representation of spreadsheet resources is
generated according to defined rules for spreadsheet representation. Specifically, each
generated directed graph must comply with Definition 1 (Single Parent Property), Definition 2
(Root Node) and Definition 3 (Single Root Path) introduced in Chapter 4.3.4 of this thesis.

To demonstrate generation of direct graphs for two spreadsheet states, simple spreadsheet

example will be used.

Jfx|| =SumM(A1:A3)
| € | D

Figure 10. Example of spreadsheet graph at state §;

Following spreadsheet resources constitute spreadsheet program “graph.xlsx™ at state S;
represented in Figure 10.:

e Worksheet “Sheetl”: Cell Al contains value “1”.

e Worksheet “Sheetl”: Cell A2 contains value “2”.

e Worksheet “Sheetl1”: Cell A3 contains value “3”.

o Worksheet “Sheetl”: Cell A4 contains formula: =SUM (A1 : A3), which evaluates to

value “6”.

37

Direct graph generated from spreadsheet program “graph.xlsx” at state S; is visually

Figure 11. Directed graph representation of spreadsheet at state §;

represented in Figure 11.

After modifications to spreadsheet resources, the spreadsheet state transition to new state

S;+1 1s visually represented in Figure 12.

~PRODUCT(A1:A4)
c | D

Figure 12. Example of spreadsheet graph at state S;, 4

Following spreadsheet resources constitute spreadsheet program “graph.xlsx™ at state ;.4
represented in Figure 12.:
e Worksheet “Sheetl”: Cell Al contains value “1”.

e Worksheet “Sheetl”: Cell A2 contains value “2”.

38

e Worksheet “Sheetl”: Cell A3 contains value “3”.
e Worksheet “Sheetl”: Cell A4 contains value “4”.
e Worksheet “Sheetl”: Cell A5 contains formula: =PRODUCT (Al:24), which

evaluates to value “18”.

Direct graph generated from spreadsheet program “graph.xlsx” at state S;,q is visually

represented in Figure 13.

=PRODUCT(A1:A4)

Figure 13. Directed graph representation of spreadsheet at state S, 4

4.6.2. Conflict Resolution for Access Rules

During the second step, resolution of potential conflicts for graph representation of
spreadsheet resources and defined access rules is determined to ensure correct ABAC4S
processing. ABAC4S protocol access rules are defined as a set of quadruples. There is no
limitation in the number of quadruples created to model specific user role. This results with
great flexibility and granularity for ABACA4S access rules, because each spreadsheet resource
behavioral and structural properties can be tightly controlled during the whole lifecycle. The
negative side of this flexibility are potential conflicts in resolution of effective user roles and
consequently inability of ABAC4S protocol to determine validity of spreadsheet transition
between two states. The following definitions for ABAC4S protocol processing logic are

introduced to resolve potential conflicts detected for user’s access rules.

39

Definition 4 (Priority of Actions):

Actions assigned to users are evaluated in the following order:

DELETE > CREATE > UPDATE > READ. (8)

Definition 5 (Access Rule Inheritance):
All spreadsheet’s resources inherit access rules applicable to their parents. To break chain
of inheritance for spreadsheet resource, its parent should not have explicit access rule assigned

(“Deny All Property” if explicit access rule for spreadsheet resource is not assigned).

Definition 6 (Spreadsheet Valid State):
Spreadsheet is in valid state S;,,, iff Definition 4 (Priority of actions) and Definition 5
(Access Rule Inheritance) are satisfied for all affected spreadsheet resources during spreadsheet

state transition from §; to S .

O

For example, let’s say that user analyst has two access rules assigned to control

spreadsheet program “graph.xlsx” represented in Figure 10.:

(analyst, update, Sheetl, Instance = ”“graph.xlsx”)A

(analyst, delete, Sheetl.A4, Instance = “graph.xlsx”)

Above access rules specify role for user analyst that allows the user to update worksheet
Sheetl and delete cell A4 within Sheetl. This combination of access rules creates conflict in
resolution, because actions allowed for cell A4 have higher order than worksheet Sheet! that is
parent to cell A4. During conflict resolution, all spreadsheet resources inherit actions from their
parent (Definition 5 for Access Rule Inheritance) and always actions with higher priority are
enforced (Definition 4 for Priority of Actions). Important to note is that Definition 1 (Single
Parent Property) and Definition 3 (Single Root Path) guarantee that for each spreadsheet
program represented as hierarchical directed graph of spreadsheet resources only one path from
each spreadsheet resource to root node exists. For simple spreadsheet program “graph.xlsx”

root paths for all spreadsheet resources are following:

40

graph — Sheetl - A4 - SUM(A1: A3). 9)

graph — Sheetl — A4. (10)
graph — Sheetl — A3. (11)
graph — Sheetl — A2. (12)
graph — Sheetl — Al. (13)

graph — Sheetl (14)

Intuitively, conflict resolution is easier to understand if we look first what action are allowed
for “Parent” resource, and naturally with inheritance applied the same action should be applied
to its “children”. In the above practical example, conflict resolution algorithm will enforce
actions allowed on Sheetl (update) to cell A5 and will forbid deletion of cell A4 within Sheetl

worksheet for user analyst.

Based on introduced definitions for resolution of conflict detected within specified access
rules and given hierarchical graph representation of resources at spreadsheet state §;, following

algorithm ResolveConflict is defined in following Table 3.

Table 3. Algorithm ResolveConfig

Algorithm 1 ResolveConflict(DG: SpreadsheetGraph, AR: AccessRules)

1: DG: EDG « SpreadsheetGraph

2: ForEach Node in EDG:

3 ForEach Rule in AccessRules:

4 If Node[Name] == Rule[SpreadsheetResource]
5: Node[Action] < Rule[Action]

6: ForEach Node in EDG:

7 If Node[Action] <> Predecessor(Node[Action])
8 Node[Action] < Predecessor(Node[Action])
9: return EDG

Algorithm ResolveConflict in above pseudo code resembles elements of syntax
utilized in Python programming language [53] and NetworkX graph processing library [54]. It
is presented as a function that takes generated SpreadsheetGraph and AccessRules as

parameters. Algorithm is structured around two traversals through EDG object (short for

41

Effective Direct Graph) instantiated at the beginning from passed SpreadsheetGraph
object of type DG (short for Directed Graph). Within nested loop of the first pass through graph
EDG, for matched graph node and spreadsheet resource in access rule, action attribute of the
node is set to action attribute of matching access rule. During the second pass through graph
EDG, action attribute of each node is compared with action attribute of its predecessor node. In
case of differences identified, action attribute of the node is set to action attribute of its
predecessor node. The function Predecessor () can be simply determined due to the
Definition 1 for Single Parent Property of the graph representation for spreadsheet resources.
In case multiple access rules tuples are passed as parameter, the last tuple determined during
iteration through collection of all access rules with matching spreadsheet resource attribute will
be used to assign action attribute to generated EDG graph. This is intentional behavior as
multiple access rules for the same spreadsheet resource and the same user creates contradiction.
In case such cases are identified during processing access rules, only the last definition is
processed as valid and relevant while all others are ignored. As a result of algorithm processing
generated EDG graph with resolved potential conflicts in access rules is returned. Action
attributes for each node in returned EDG graph contain effective access rules determined.,

without potential conflicts in resolution.

4.6.3. Determination of Changes Between Two Spreadsheet States

During the last and third step of ABACA4S protocol processing logic, direct graphs

representing two consecutive spreadsheet states are compared to determine transition AS;(MU)
between two spreadsheet lifecycle states. Transition AS;(MU) between spreadsheet states S;
and ;4 is defined as union of all modifications M performed by user U on affected spreadsheet

resources. Based on all identified modifications to affected spreadsheet resources, ABAC4S
protocol evaluates transition AS;(MU) and determines its validity by comparing performed

spreadsheet resources modifications with defined ABAC4S protocol access rules.

Permited | Prohibited; (preventive mode)
ABAC4S(AS;(MU), AccessRules) = (15)
Valid | Invalid; (detective mode)

In preventive implementation, ABACA4S protocol evaluates transition AS;(MU) and user’s

access rules before the modifications are submitted to spreadsheet application and determines

42

if actions are permitted or prohibited. In detective implementation, ABAC4S protocol evaluates
transition AS;(MU) and user’s access rules after the change(s) have been recorded in
spreadsheet applications and determines if performed actions are valid or invalid.

With spreadsheet resources represented as directed graphs, determination of transition
AS;(MU) between two spreadsheet lifecycle stages becomes a challenge. This evaluation
between two graphs is based on matching and comparing vertices and edges of the two involved
graphs. The graph matching methods can be divided into two broad categories: exact graph
matching and error-tolerant graph matching. Exact graph matching addresses the problem of
detecting identical (sub)structures of two graphs g; and g, and their corresponding attributes
[55]. In the context of ABACA4S protocol transition determination between two spreadsheets
states, only exact graph matching algorithms are evaluated. Error-tolerant graph matching
algorithms for spreadsheet state transitions are not evaluated in this research, as this would
result in unpredictable determination of modifications performed in spreadsheets and
consequently undesired performance of ABACA4S protocol. In the following, general attributed

graph definition is provided [56].

Definition 7 (Attributed Graph):
An attributed graph (AG) is represented by quadruple AG = (V, E, u, w), such that:
e I/ isaset of vertices (nodes).
e FEisasetofedgessuchas E SV X V.
e u:L — Ly is a vertex labeling function which associates label [, to vertex v;.
e w:E - Lg is and edge labeling function which associates label [to edge e;.
e Ly and L are vertex and edge attributes sets, respectively. These attributes can be
given by a set of integers L = {1,2,3}, a vector space L = RY and/or a finite set of

symbolic attributes L = {x, y, z}, which can differ in their dimensions.
O

Definition 7 for attributed graph supports all requirements for direct graph representation
of spreadsheet resources. For example, node attributes, such as Name, Action or Value
associated with each node in spreadsheet graph representation can be handled with symbolic
attributes set L = {Name, Action, ..., Value, }, with dimensions suitable for each node.

Graph Edit Distance (GED) is a graph matching method used in graph theory to quantify
the similarity or dissimilarity between two graphs. Analogous to string edit distance (like

Levensthein string edit distance [57]), GED measures the minimum "cost" of transforming

43

graph g, into graph g, through a sequence of elementary graph edit operations on graph g;.
The allowed operations are inserting, deleting and/or substituting vertices and their

corresponding edges. In the following, GED definition is provided [56].

Definition 8 (Graph Edit Distance):
Let g, = (V4,E1, 4y, w1) and g, = (Vy, E,, Uy, w5) be two graphs. The graph edit distance
(GED) between g4 and g, is defined as:

GED (g1, g2) = min YK c(e) (16)
€1,--€k€yY(91,.92)

such that:
e ¢ denotes the cost function measuring the strength c(e;) of an edit operation e;.

e y(g1, g2) denotes the set of edit paths transforming g, into g,.

The "edit operations" are atomic changes applied to the graph. Each operation is assigned a
specific cost function c(e;). Cost function c(e;) can be uniform or weighted differently based
on the specific application of GED algorithm. The "cost" of an edit path (sequence of k
operations) Y'¥_, c(e;) is the sum of the costs of all individual operations within that path. The
GED is then the minimum cost among all possible edit paths that transform graph g, into graph
92
Common elementary edit operations include:

e Vertex Insertion () — v) : Adding a new vertex (node) to the graph.

e Vertex Deletion (u — 0) : Removing an existing vertex (node) from the graph.

e Vertex Substitution (u — v): Changing the label or attributes of an existing vertex
(node). This can also be interpreted as deleting a vertex (node) and inserting a new one
with different attributes.

o Edge Insertion(® — (u,v)): Adding a new edge between two existing vertices.

e Edge Deletion ((u,v) — 0): Removing an existing edge.

e Edge Substitution ((u,v) — (u',v")): Changing the label or attributes of an existing
edge.

44

Currently, the most efficient implementation of GED method is Depth-First Graph Edit
Distance (DF-GED) algorithm [56]. In comparison with other well-known Astar GED
Algorithm (A*GED) that is considered as a foundation work for solving GED [58], with DF-
GED algorithm memory consumption is not exhausted.

ABACA4S protocol for automated quality assurance of spreadsheets utilizes GED method

for determination of AS;(MU) during spreadsheet state transition from S; to Sj, ;. Mapping

between GED elementary operations and ABAC4S protocol action is provided in Table 4.

45

Table 4. Mapping between GED operations and ABACA4S actions

GED elementary operation ABACA4S protocol action

Vertex Insertion (@ — v) CREATE action. For example, the worksheet

Dashboard is created in spreadsheet.

Vertex Deletion (u — 0) DELETE action. For example, the worksheet

Dashboard is deleted from spreadsheet.

Vertex Substitution (u — v) UPDATE action. For example, the worksheet
Dashboard is renamed to Report.

Edge Insertion(@ — (u,v)) CREATE action to add new spreadsheet resource
within hierarchy of other spreadsheet resources.
This operation creates hierarchical “has-a”
relationships between spreadsheet resources. For
example, a cell Al is inserted to the worksheet

Dashboard.

Edge Deletion ((u,v) — @) DELETE hierarchical relationship between
spreadsheet resources. It is important to note that in
the context of ABACA4S protocol, DELETE action
for node (vertex) representing spreadsheet
resource, automatically performs DELETE action
for edge representing “has-a” relationship from its
parent. For example, deletion of the worksheet
Dashboard, removes spreadsheet resource
Dashboard (node deletion) and its link to parent

spreadsheet resource (edge deletion).

Edge Substitution ((u,v) — (u',v')) | UPDATE action to hierarchical relationship
between spreadsheet resources. For example, the
formula in cell Al in worksheet Dashboard is

moved from cell A1 in worksheet Dashboard to cell

Al in worksheet Report.

To demonstrate determination of AS; (MU) during spreadsheet state transitions,

spreadsheets represented in Figure 11. and Figure 13. will be analyzed with the GED method.

46

Spreadsheet resources that are affected as part of spreadsheet state transition are highlighted

with light blue color in Figure 14.
Qgrﬂph >

1

Sheet1

"

<=SLI MiA1 :_ﬂi,;\l

GED method

(wo

O/(Ei

=PRODUCT(A1:A4)

Ad Ab

C

E

Figure 14. Visualized transition between two graphs

Mapping between GED elementary operations and ABAC4S protocol action for this

example is provided in Table 5.

47

Table 5. Example of mapping between GED and ABAC4S actions

GED elementary operation

ABACA4S protocol action

Vertex Substitution (Sheetl.A4.Value =
"=SUM(A1:A3)" - Sheetl. A4.Value =
n4n)

UPDATE action. Cell A4 in worksheet
Sheetl is updated from value

»=SUM(A1:A3) to new value ,,4*

Vertex Insertion

(@ — Sheetl.Cell. Address = "A5")

CREATE action. Cell A5 in worksheet

Sheetl is created.

Edge Insertion (§ — (Sheet1, A5))

CREATE action. Worksheet Sheet] “has-a”
new cell AS (i.e., a cell AS is inserted to the
worksheet Sheetl).

Vertex Insertion
(@ - Formula.Value

= "=PRODUCT(A1:A4)")

CREATE action. New formula is created
with value ,,=PRODUCT(A1:A4)".

Edge Insertion (@ —
(Sheetl. A5, Formula.Value =
"=PRODUCT(A1:A4)"))

CREATE action. Cell A5 within
worksheet Sheet] “has-a” formula new

with value ,,=PRODUCT(A1:A4)*.

Under the assumption that cost for individual GED edit operation is 1 in the above example,

the minimum total cost of the spreadsheet transition determined by GED algorithm is 5.

48

5. Model Checking

Model checking is a model-based verification procedure designed to automatically verify
properties of finite state systems [26], [28]. The core principle behind a model checking
procedure is exhaustive exploration of states to verify whether a given system model satisfies
certain properties.

Transition state machines are used in model checking to represent the behavior of the
system. A common method for representing transition state machines are Kripke structures. A

Kripke structure M is represented as an ordered sequence of four objects:

M= (S1,R,L). (17)

S: finite set of states
I: set of initial states [€ S
R: transition relation R€ S X S

L: interpretation function L: S — 24F

For each state s € S there is a possible successor state s’ € S specified with transition
relation R. The interpretation function L labels each state with Atomic Propositions (AP) which
are Boolean variables and the evaluations of expressions in that state [26]. A finite path = from
some state s € S is a sequence of states T = S, Sy, .., Sp such that s, = s and R(s;, s;41) holds
forall 0 <i <n|[26].

Emerson and Clarke introduced model checking [29] and Computational Tree Logic (CTL)
as a combination of linear temporal logic and branching-time logic [30]. In model checking,
temporal logic is used to express system specifications (properties) denoted as ¢. CTL
combines path quantifiers and temporal operators to describe events associated with single
computation path.

CTL path quantifiers are as follows:

e A —for All paths from a certain state on

e FE —there Exists at least one single path from a certain state
CTL temporal operators are as follows:

e X ¢ — ¢ holds neXt time

e F ¢ — ¢ holds sometime in the Future

e G ¢ — ¢ holds Globally in the future

49

e pU ¢ — ¢ holds Until ¢ holds

CTL allows modeling complex behavior of the systems, where temporal operators must
always be preceded by a path quantifier. Figure 15. visually represents the meaning of CTL

path and temporal operators (adapted from [31]).

Finally p Globally p neXt p p Until q
(a) AFp (b) AGp (c) AXp (dApUq
Finally p Globally p neXt p p Until q
(e) EFp () EGp (g) EXp (h)EpUq

Figure 15. CTL path and temporal operators.

In practical model checking applications, system model M is described semantically with a
Kripke structure and the specifications (properties) are described with formulae ¢ in the
applicable form of temporal logic. The decision procedure conducted by a model checker tool

decides whether M = ¢. Operator = meaning is “specification ¢ is satisfied by structure M*.

50

6. Model Checking the ABAC4S Protocol

Model checking of the proposed ABAC4S protocol for spreadsheets has been performed
with the NuSMV symbolic model checker [25]. Original SMV model checking tool has been
developed at the Carnegie Mellon University [32]. NuSMV is a modern variant of original SMV
symbolic model checker with compatible SMV language syntax and advanced architecture that
allows textual construction of hierarchical models and verification of very large number of
states [33].

The system model is a transition system with a set of states and transition relations that
specifies the behavior of the system. In SMV language, a system is defined as a module,
beginning with the keyword MODULE. The module consists of an encapsulated collection of
declarations (such as VAR, INIT, ASSIGN, etc.) that depend on the nature of the analyzed
problem and specific parameters. A module’s state variables declaration begins with the
keyword VAR. In general, model checker tools are limited to only few data types and the SMV
language allows for Boolean values, enumeration of constants, or other modules for
constructing hierarchical models. The set of initial states can be specified with simple logical
statements or conjunctions of equations associated with the initial state of the system. The
transition relation of a module starts with the keyword ASSIGN and may be limited to single
statement or complex set of equations. An assignment statement is structured as the next step
evaluation, where the right-hand side allows the construction of complex expressions built with
Boolean operators, integer arithmetic and case constructs with conditions.

The main challenge during the development of NuSMV model with the SMV language has
been the abstraction of the provided spreadsheet conceptual model with suitable SMV module.
The hierarchy of created SMV modules follows the natural hierarchy of spreadsheet resources

defined in the spreadsheet conceptual model and presented visually in Figure 16.

51

spreadsheet

named_object worksheet

Figure 16. Hierarchy of spreadsheet resources as SMV language modules.

All possible access role combinations and defined CRUD user actions have been explored
during research presented in this thesis. In such a scenario, correct protocol behavior should
detect and resolve potential conflicts during the consecutive model state. Below is the

hierarchical model of spreadsheet resources specified in SMV language.

MODULE spreadsheet t ()
VAR
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};
add in:add in t();
named object:named object t();

worksheet:worksheet t();

MODULE add in t ()
VAR

role: {developer, tester,analyst,manager};

52

a: {create, read,update,delete};

MODULE named object t ()
VAR
role: {developer, tester,analyst,manager};

a:{create, read,update,delete};

MODULE worksheet t ()

VAR
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};
table:table t();
cell:cell t();

MODULE table t()
VAR
role: {developer, tester,analyst,manager};

a:{create, read,update,delete};

MODULE cell t ()

VAR
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};

formula:formula t();

MODULE formula t ()
VAR
role: {developer, tester,analyst,manager};

a:{create, read,update,delete};

MODULE main
VAR
spreadsheet:spreadsheet t();

53

As listed in the above specifications, capability of the SMV language to construct
hierarchical modules that correspond to the natural hierarchy of spreadsheet resources have
been utilized in developed SMV modules. The above modules represent all possible state
transitions AS;(MU) for each spreadsheet resource, assigned users and CRUD actions. To
prevent state space explosion, each spreadsheet resource has been abstracted and simplified to
a bare minimum, without loss for ABAC4S protocol correctness. In case more complex
representation is required with additional two attributes on module spreadsheet t (), they
can be added with an enumerated list of constants. Next case assignment for added attributes in
SMV code specification are sharing the same structure with original simplified model

specification.

MODULE spreadsheet t ()
VAR
attributes: {spreadsheet attributel, spreadsheet attributel2};
role: {developer, tester,manager};
a:{create, read,update,delete};
add in:add in t();
named object:named object t();

worksheet:worksheet t();

Transitions to new states are modeled in SMV with next-case statements within the
ASSIGN language construct. ABACA4S protocol rules for priority of actions and access rule
inheritance are specified with a complex conjunction statement from relevant spreadsheet
resource properties. As visually represented in Figure 16., there are six conjunction statements
(Psn> Pswr Psar Pwer Pwer Pcp) that correspond with the hierarchical representation of
spreadsheet resources. In order to correctly specify both protocol rules for priority of actions
and access rule inheritance, the correct transition to the next state for the hierarchically lowest
spreadsheet resource (formula) should be evaluated as a composition of all statements on the
path to the root spreadsheet resource (¢.f, Pwe, Psw). Fragment of SMV code for ¢, next-
case conjunction statement that specifies logic for priority of actions and access inheritance
protocol rules is listed below. The complete SMV source code for ABAC4S protocol
specification is provided in Appendix B. of this thesis and author’s GitHub repository [34].

54

next (spreadsheet.worksheet.a) :=
case
spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=read) & (spreadsheet.worksheet.a in \

update, create,delete}): read;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=update) & (spreadsheet.worksheet.a in \

read, create,delete}) : update;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=delete) & (spreadsheet.worksheet.a in \

read, create,update}) : delete;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=create) & (spreadsheet.worksheet.a in \

read,update,delete}) : create;

TRUE : spreadsheet.worksheet.a;

esac;

After finalization of model construction and formal specification of the spreadsheet
conceptual model and ABAC4S protocol rules, model checking has been conducted with the
NuSMV model checker. NuSMV model checker has been utilized in interactive mode with
support of NuSMV built-in shell for execution of CTL temporal logic property checks.

CTL temporal logic specification with the following structure has been used to verify

correctness of protocol rules for priority of actions and access inheritance:

AG (p — AF q). (18)

The CTL temporal logic specification above should be interpreted as “for all execution
paths globally, when condition p occurs it is always followed by condition g”. If we apply the
above generic CTL specification i.e. for the table spreadsheet resource, the specific CTL syntax

is as follows:

55

check ctlspec -p "AG \

((spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.worksheet.role= \
spreadsheet.worksheet.table.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \
(spreadsheet.worksheet.table.a in {update,create,delete}) \

-> AF spreadsheet.worksheet.table.a=read)"

As aresult of the above CTL temporal logic specification check, the NuSMV model checker

confirms that the above specification is satisfied by given model:

NuSMV >

-— specification AG (((((spreadsheet.role =
spreadsheet.worksheet.role & spreadsheet.worksheet.role =
spreadsheet.worksheet.table.role) & spreadsheet.a = read) &
spreadsheet.worksheet.a = read) &
spreadsheet.worksheet.table.a in (update union create) union
delete) -> AF spreadsheet.worksheet.table.a = read) is true

NuSMV >

NuSMV model checker evaluates the above CTL specification to true, thus formally
verifying correct conflict resolution and correct behavior of two protocol rules in case of a table
spreadsheet resource. Appropriate CTL specifications for other spreadsheet resources follow
the same generic structure, however conjunction statements are growing in complexity for
hierarchically lower spreadsheet resources due to longer evaluation path to the root spreadsheet

resource.

56

7. Spreadsheet Quality Assurance

In recent years, researchers identified the need to relate types and occurrences of
spreadsheet errors with the quality of the spreadsheets. Intuitively, a higher incidence of
spreadsheet errors suggests that the overall quality of spreadsheet is low. According to the
International Organization for Standardization (ISO), Quality Assurance (QA) is a systematic
process that provides confidence that a product, service, or process meets quality requirements.
QA plays an instrumental role in fostering a culture of constant, ongoing improvement. QA
involves planned and systematic actions to achieve this confidence, often implemented within
a quality management system. The primary aim of QA is to reduce the risk of defects — and
importantly, to address faults as early as possible in the value chain [59]. In the context of
spreadsheets QA, this means putting in place both technical and managerial processes and

controls to ensure that quality attributes are fulfilled during whole lifecycle of spreadsheets.

7.1. Spreadsheet Quality Model

While early spreadsheet use was often informal, the growing reliance on them for critical
decision-making process within enterprise triggered significant evolution in spreadsheet quality
assurance practices. In one of the first attempts to formalize quality assurance principles,
O’Beirne presented an overview of information quality and data quality within the context of
spreadsheets [13]. The author presented a comprehensive list of information quality attributes
in the context of spreadsheet programs. As part of the research conducted, O’Beirne presented
practical checks and control procedures to increase the quality of spreadsheet programs.

Further refinement in spreadsheet quality research provided a set of domain specific
metrics, used to measure concrete spreadsheet characteristic [14]. Based on widely accepted
ISO/IEC 9126 international standard for software product quality [15], Peixoto developed a
model of quality for spreadsheets, defining all the features that are important on a spreadsheet
and how the quality of that feature can be quantified [51]. The author provided a comprehensive
analysis of ISO/IEC 9126 standard and mapped relevant quality attributes to spreadsheets.
Spreadsheet quality model is visually presented in Figure 17. [51].

57

Spreadsheet

Quality
Model
Functionality Reliability Usability Efficiency Maintainability Portability
Suitability Understandability Time Behaviour Analyzability
Accuracy Maturity Learnability Changeability Adaptability
Interoperability Fault Tolerance QOperability Resource Stability
Security Altractiveness Utilization Reliability

Figure 17. Spreadsheet quality model

In continuation of the research presented in this thesis, each of the characteristic defined in
spreadsheet quality model is discussed in the context of novel ABAC4S protocol for automated

quality assurance of spreadsheets.

7.1.1. Functionality

Functionality is the capacity of the spreadsheet to satisfy the user’s needs, either implied or
stated. It is divided into the following sub-categories:
e Suitability: Is the quality of having the properties that are right for a specific purpose.
o Number of incongruences.
o Number of references to blank cells in formulas.
e Accuracy: Is the faithful measurement or representation of the true, correctness.
o Number of output cells with errors or invalid content.
e Interoperability: Is the ability of two or more spreadsheet resources to exchange
information and to use the information that has been exchanged.
o Data exchanged between worksheets.
o Quantity of rightful formulas.
o Total number of cells with references.
e Security: ensure confidentiality and integrity of spreadsheet programs and data.
o Protection of raw data in cells.

o Protection of data structures and data types.

58

o Use of data validation constraints.

o Ensure confidentiality and restricted access to users.

ABACA4S protocol can effectively control suitability, accuracy, interoperability and security
of spreadsheet programs. With granular composition of ABACA4S access rules, structural
characteristics for each spreadsheet resource can be controlled to prevent dissonances between
initial user’s expectations and actual solution developed, prevent references to empty formulas,
enforce validation through access rules allowable types and data contained in cells. ABAC4S
protocol brings additional controls to ensure confidentiality and integrity of spreadsheet
programs and data that are not currently available in commercial spreadsheet applications. For
example, password locks on workbooks or worksheets can enforce only discretionary access
control where spreadsheet owners can control basic access rights to users. With granular
implementation of access rights for different users, ABAC4S can enforce complex

authorizations for spreadsheet programs required in multi-user environments.

7.1.2. Reliability

Reliability is the capacity to maintain its level of performance under stated conditions
during the whole lifecycle of spreadsheet program. It is divided into the following sub-
categories:

e Maturity: The state of quality of being fully developed and up to date with the latest

user’s requirements.
o Number of empty labeled rows and columns.
o Number of orphan worksheets, cells, formulas and other spreadsheet resources
not used as part of spreadsheet calculations.
e Fault Tolerant: Quality characteristics to continue operating properly in the event of one
or more faults within spreadsheet component.
o Overall complexity and number of cells and other spreadsheet resources used to
perform calculation.
o Number of complex formulas.

o Number of complex user-defined functions and other custom components.

ABACA4S protocol can effectively control maturity and fault tolerance of spreadsheet

programs. Mature design and layout of spreadsheet resources within spreadsheets, complexity

59

of formula and user defined functions can be tightly controlled with ABAC4S access rules

structural characteristics. In addition, behavioral aspects of ABAC4S access rules enables

enforcement of spreadsheet development standards within multi-user environments and proper

segregations of duties between developers, data inputters and other spreadsheet users.

Complexity of externally built spreadsheet modules can be controlled with ABAC4S access

rules through validation of input parameters and returned results.

7.1.3. Usability

Usability is the property of the spreadsheet to be understood by users, enabling seamless

user experience. Usability is characterized by consistency of spreadsheet program, accessibility,

and overall user’s satisfaction. It is divided into the following sub-categories:

e Understandability: Spreadsheet property to be understood by users.

o

o

o

Intuitive colors, layout and structure of spreadsheet resources utilized by users
during interaction with spreadsheets.
Separation between input, computation and output.

Total number of spreadsheet resources utilized for user’s interaction.

e [Learnability: Spreadsheet property to enable fast and fluent adoption of spreadsheet

programs for new users.

o

o

Total number of spreadsheet resources used for interaction with users.

Color coding and layout style for spreadsheet resources used for interaction with
users.

The amount and structure of the data flows between worksheets and other

spreadsheet resources.

e Operability: Spreadsheet quality property driving positive user experience while

minimizing the number of users actions and overall user’s fatigue.

o

o

o

Use of effective data validation and drop-down lists.

Controlled size and complexity of validation lists.

Separation between input, computation and output worksheets and associated
computational resources.

Natural flow of information and actions from up to down and from left to right

during user's interaction with spreadsheets.

e Attractiveness: Spreadsheet visual and functional attractiveness that enables positive

user experience.

60

o Visual layout of input fields and output results.
o Attractive color coding.
o Overall spreadsheet design compliant with organizational development

standards.

ABACA4S protocol can effectively control understandability, learnability, operability and
attractiveness of spreadsheet programs. This can be achieved in a fully automated way, once
proper access rules to support the above quality characteristics are developed. For example,
once the visual layout for input worksheets and cells is codified in ABACA4S access rules, they
can be used as templates and ensure that organizational visual standards are consistently
deployed to all spreadsheet programs. Flexibility and granularity of ABAC4S access rules can
effectively support variety of visual standards, layouts and color coding for spreadsheet cells

and other visual elements used in spreadsheet programs.

7.1.4. Efficiency

Efficiency property of spreadsheets relates to the amount of spreadsheet resources utilized

to achieve desired goal. It is divided into the following sub-categories:

e Time Behavior: Overall duration of time required to complete task modelled with
spreadsheet program.

o The number and complexity of formulas and other spreadsheet resources
required for complex calculations.
o Number of repetitive actions that are causing time inefficiencies.

e Resource Utilization: Overall resource utilization (processing power, memory
consumption, slow interfaces to other systems) required to complete task modelled with
spreadsheet program.

o Number and complexity of spreadsheet resources that are increasing processor
and memory consumption.

o Ineffective data interfaces to other systems.

ABACA4S protocol can effectively control time behavior and resources utilization of
spreadsheet programs. For example, with environment attribute specified in ABAC4S access
rules, characteristics of spreadsheet execution environment for cloud-based spreadsheets can

be specified. Characteristics and modularity of spreadsheet resources can be enforced with

61

access rules to ensure that desired resource utilization and time behavior of spreadsheet program

is achieved and maintained during the whole spreadsheet lifecycle. Type of input parameters

for user defined functions as well as other computational modules can be controlled with access

rules to prevent wrong data types at the input. Size and structure of input parameters can also

be controlled with ABAC4S protocol access rules to prevent uncontrolled resource utilization.

7.1.5. Maintainability

Maintainability is the property of spreadsheets to expand functionality or correct errors. It

is divided into the following sub-categories:

Analyzability: Characteristics to be analyzed and rich conclusions within the shortest

possible period.

o

Overall number and complexity of spreadsheet resources utilized to develop
spreadsheet programs.

Self-description of spreadsheet program through comments and structured
naming convention.

Use of named ranges and named objects with intuitive names instead of cryptic

names and cell references.

Changeability: Time and resources required to change spreadsheet program.

o

Overall number and complexity of spreadsheet resources utilized to develop
spreadsheet programs.
Modularity and granularity of spreadsheet resources utilized to develop
spreadsheet programs.
Clarity of interfaces, parameters and returned results for computational

spreadsheet resources.

Stability: Frequency and resources required to maintain, fix and patch spreadsheet

programs to sustain desired functionality.

o

Overall number and complexity of spreadsheet resources utilized to develop
spreadsheet programs.

Number and complexity of data transformations.

Assumptions and exception management during computation and data

transformations.

Testability: Time and resources required to test spreadsheet program.

62

o Overall number and complexity of spreadsheet resources utilized to develop
spreadsheet programs.

o Modularity and granularity of spreadsheet resources utilized to develop
spreadsheet programs.

o Clarity of interfaces, parameters and returned results for computational
spreadsheet resources.

o Proper data transformations and type inferences.

ABACA4S protocol can effectively control analyzability, changeability, stability and
testability quality characteristics of spreadsheet programs. With access rules structural
characteristics for each spreadsheet resource overall complexity can be controlled with details
for input parameters and output results of each computational module. For example, if
modularity characteristic requires that each user defined function accepts only one input
parameter this can be easily achieved with access rules. This will prevent the creation of large
and bulky user defined functions with multiple input parameters and enforce usage of smaller
user defined functions that perform simple and testable computation. Desired result of
computation and better information flow can be achieved with proper composition of smaller
user defined functions. Consequently, this good development practice enforced through
ABACA4S access rule will increase overall analyzability, changeability, stability and testability

of spreadsheet program.

7.1.6. Portability

Portability i1s the quality characteristic of spreadsheet programs to run effectively within
different spreadsheet execution environments. It is divided into the following sub-categories:
e Adaptability: To what extent can the spreadsheet program adapt to environmental
change.
o The number and complexity of unique spreadsheet resources used depends on
certain versions of spreadsheet application and/or programming language.

o Nonstandard data formats used.
ABACA4S protocol can effectively control the adaptability of spreadsheet programs. Key

design requirements for ABAC4S protocol are independence from commercial spreadsheet

application and closed vendor data exchange and data storage formats. ABAC4S protocol

63

access rules are defined in an open and simple text-based format. In use cases for ABAC4S
protocol implementation presented in this thesis, representation of developed access rules is
provided in open JavaScript Object Notation (JSON) format. In addition, other portability
characteristics can be easily enforced with access rules. For example, use of functions that are
portable between different spreadsheet applications can be enforced with ABAC4S access rules

to improve overall portability of spreadsheet program.

7.2. Automated Spreadsheet Quality Assurance

In the work of Jannach et al. [63], automated spreadsheet quality assurance approaches have
been classified into finer-grained scheme. The classification provided by authors analyzed
various automated spreadsheet quality assurance approaches in terms of their capabilities to
serve both finding (detection) and avoiding (prevention) errors and quality issues in spreadsheet
programs. The following automated quality assurance approaches are presented in the work of

Jannach et al. [63]:

e Visualization-based approaches: These approaches provide the user with a visually
enhanced representation of some aspects of the spreadsheet to help him or her
understand the interrelationships and dependencies between cells or larger blocks of the
spreadsheet. These visualizations help the user to quickly detect anomalies and
irregularities in the spreadsheet.

e Static analysis & reports: These approaches are based on static code analysis and aim to
point the developer to potentially problematic areas of the spreadsheet. Examples of
techniques include “spreadsheet smells” or the detection of data clones but also the
typical family of techniques found in commercial tools capable of reporting summaries
about unreferenced cells.

e Testing-based techniques: The methods in this category aim to stimulate and support
the developer to systematically test the spreadsheet application during or after
construction. The supporting tools for example include mechanisms for test case
management, the automated generation of test cases or analysis of the test coverage.

e Automated fault localization & repair: The approaches in this category rely on a
computational analysis of possible causes of an error or unexpected behavior through
code debugging and analysis tools. They rely on additional input by the developer such

as test cases or statements about the correctness of individual cells. Modern approaches

64

for automated fault localization and repair are based on Large Language Models (LLM)
specifically trained for spreadsheets capable of providing “repair” suggestions and
syntax reconstruction [22].

e Model-driven development approaches: Methods in this category mainly adopt the idea
of using (object-oriented) conceptual models as well as model-driven software
techniques during development of spreadsheet programs. The typical advantages of
such approaches include the introduction of additional layers of abstraction or the use
of code-generation mechanisms.

e Design and maintenance support: The approaches in this category either help the
spreadsheet developer to end up with better error-free designs or support him or her
during spreadsheet construction. The mechanisms proposed in that context for example
include automated refactoring tools and spreadsheet code suggestions provided by tools

such as FLAME language model [22].

Overview of main categories for automated quality assurance of spreadsheets proposed by

Jannach et al. [63] is presented in Table 6.

Table 6. Summary of spreadsheet QA approaches

Automated Spreadsheet QA Finding Errors | Avoiding Errors
Visualization-base approaches X X
Static code analysis and reports X X
Testing approaches X
Automated fault localization and repair X
Model-driven development approaches X
Design and maintenance support X

ABACA4S protocol for automated quality assurance of spreadsheet programs uniquely
addresses both methods in focus of quality assurance research, finding (detection) and avoiding
(prevention) of spreadsheet errors and quality issues. In comparison to other automated quality
assurance approaches presented by Jannach et al. [63], unique properties of proposed ABAC4S
protocol can be summarized as follows:

e ABACA4S protocol for automated quality assurance of spreadsheet programs allows

comprehensive control over user’s interactions with spreadsheets in enterprise

environments based on roles and job descriptions modeled with ABAC4S access rules.

65

ABACA4S protocol can control behavioral and structural quality criteria for spreadsheets
on granular level of spreadsheet resources and complex authorization schemes present
in multi-user environments.

ABACA4S protocol can be combined successfully with other spreadsheet quality
assurance approaches presented in the work by Jannach et al. [63], depending on needs

and maturity of organizations willing to improve quality of their spreadsheets.

66

8. ABACA4S Protocol Use Cases

A practical example of ABAC4S protocol for automated quality assurance of spreadsheets
in multi-user environments will be demonstrated with two use cases. In the first case, ABAC4S
protocol was implemented to manage the lifecycle of spreadsheet used as IT Administrator
logbook. The author of this thesis developed this spreadsheet use case as request from small
company IT department to maintain structured IT Administrator logbook. In the second case,
ABACA4S protocol was implemented to manage calibration processes within analytical
laboratory. The Calibration process for Negative Temperature Coefficient (NTC) probes have
been supported with spreadsheet program to record calibration results and provide structured
reports to laboratory personnel. In both cases, standalone versions of Microsoft Excel
spreadsheet have been used (Version 2505 Build 16.0.18827.20102, 64-bit). ABACA4S protocol
computational logic has been developed by the author of this thesis as collection of scripts in
Python programming language [54]. It is important to note that used scripts are not production
ready and have been used primarily as a proof-of-concept research tool. Scripts have been
executed asynchronously to simulate ABAC4S computational logic, including parsing of excel
spreadsheets xIsx files and parsing of access rules as textual comma separated files with tuples
representing ABACA4S access rules. An implementation of Depth-First Graph Edit Distance
(DF-GED) algorithm from Python NetworkX library (optimal edit paths function)
has been used to determine changes performed by users in spreadsheets [55]. In both cases,
ABACA4S protocol has been deployed in detective mode where user’s action and spreadsheet
state transitions have been evaluated with ABACA4S protocol after the changes have been
recorded in spreadsheets. The goal was to minimize impact on spreadsheet users, and existing

habits on how users interact with their spreadsheets.

8.1. IT Administrator Logbook

Process of maintaining servers and networking equipment within small company is
documented in IT Administrator logbook. On a weekly basis, computer administrators perform
critical sets of activities to upgrade and maintain all required servers owned by company.
Computer administrators are divided into two groups, first managing Microsoft Windows based
servers, and second managing Linux based servers. It is important that all critical maintenance
and patching activities are initiated and completed during Friday’s afternoon with minimal
impact to business processes. During the same planned maintenance period, IT network

administrators should as well conduct key activities on networking equipment. Servers and

67

networking equipment have dedicated (Internet Protocol) IP addresses that uniquely identifies

each host on the company network. Each administrator should log in to the spreadsheet diary

logbook short information about impacted asset during and status of completed activities. The

company has an internal software development department with experienced spreadsheet

developer and structured development standard in place. Based on the provided short process

description in place for maintenance activities, following spreadsheet structural requirements

and user’s roles are defined:

Spreadsheet developer should perform coding and development activities on separate
development instance named “diary logbook dev” and after successful testing, this
development instance should be merged to production instance named

“diary logbook prod”

Diary logbook spreadsheet should contain two worksheets. First worksheet named
“Logbook”, should contain Table named “Logtable” with following columns used to
document activities performed. “Seq” is auto incremented column documenting
sequence number of performed activity. Second column is named “Date” which
document the date when maintenance have been performed. Third column in table is
named “IP Address” containing unique network address of asset where activities have
been performed. Forth column named “Status” should contain values “Passed”, “In
Progress”, “Rejected” or “Failed”. In case of “Failed” status, backup team should work
jointly with IT administrators to recover affected IT asset to latest possible state. State
“Rejected” designates unsuccessful maintenance or patching activity, but affected asset
is still operating with previous version of system software. In last column of the table,
named “Group”, IT Administrator group should be entered as “Windows”, “Linux” or
“Network”, depending on IT Administrator responsibilities. Only developer is allowed
to change worksheet “Logbook™ structure and layout. IT Administrators should be
allowed only to add new entries in the table “Logtable” according to limitations derived
from their job responsibilities. I[P addresses of affected assets should be controlled by
access rules, and for example network administrator is not allowed to document
activities for Microsoft Windows or Linux servers. Real IP addresses are obfuscated in
this example with artificially created class C IP addresses for each relevant group of IT

assets. Class C IP addresses are part of the [Pv4 addressing scheme and are designed for

68

smaller networks used in home and private networks. Just for the purpose of this
example, imaginary set of IP addresses for each IT asset group are defined as follows:
o Windows Servers IP address range: 192.168.1.10-192.168.1.100.
o Linux Servers IP address range: 192.168.1.101-192.168.1.200.
o Networking devices IP address range: 192.168.1.201-192.168.1.300.

e In second worksheet named “Dashboard”, aggregated statistics of all maintenance
activities for certain date should be presented. Statistics should be presented in simple
tabular format. Table named “MaintenanceStatus” should contain all data aggregated
from worksheet “Logbook” with following columns. In first column named “Date”,
summary of all activities from worksheet “Logbook” on certain date should be
presented. In consecutive columns, four columns named “Passed”, “In progress”,
“Rejected” and “Failed” are repeated for three different asset categories “Windows”,
“Linux” and “Network”, thus providing aggregated view for three different groups of
assets and IT administrators conducting maintenance activities. Only spreadsheet
developer is allowed to change and modify this worksheet on developer instance. On
production instance, both developer and all IT administrators should have view only
authorizations. Color coding and visual structure of Dashboard should follow existing

company’s software development standards in place.

With the above description of the maintenance process and spreadsheet structural

requirements, developer access rules for ABAC4S protocol should be structured as follows:

(developer, create, Worksheet.name="Logbook”,
Instance="diary logbook dev”)A

(developer, create, Worksheet.name="Dashboard”,
Instance="diary logbook dev”)A

(developer, create, Logbook.Table.name="Logtable”,
Instance="diary logbook dev”)A

(developer, create, Dashboard.Table.name="” MaintenanceStatus”,
Instance="diary logbook dev”)A

(developer, create, Logtable[#Headers]=["Seq”,”Date”,”1IP

Address”, ”Status”, ”Group”], Instance="diary logbook dev”)A

69

(developer, create, MaintenanceStatus|[#Headers] =["”Date”, ”Win
Passed”,”Win In Progress”,”Win Rejected”,”Win Failed”, ”“Linux
Passed”,”Linux In Progress”,”Linux Rejected”,”Linux Failed”,
"Network Passed”,”Network In Progress”,”Network

Rejected”, "Network Failed”], Instance="diary logbook dev”)A
(developer, create, Logtablel[[#Datal, [Status]]=["Passed”, ”In
progress”,”Rejected”, "Failed”], Instance="diary logbook dev”)A
(developer, create, Logtablel[[#Datal, [Group]]l=["Windows”,
"Linux”, "“Network”], Instance="diary logbook dev”)A
(developer, read, Worksheet.name="Logbook”,
Instance="diary logbook prod”)A

(developer, read, Worksheet.name="Dashboard”,

Instance="diary logbook prod”)A

With the above description of the maintenance process and spreadsheet structural
requirements, IT Administrator for Microsoft Windows servers access rules for ABAC4S

protocol should be structured as follows:

(winadmin, update, Logtablel[[#Datal] [Date]l],

AND (Instance="diary logbook prod”, Day="Friday”)A

(winadmin, update, AND (Logtablel[[#Datal, [IP
Address]]1>7192.168.1.10”, Logtablel[#Datal, [IP
Address]]<”192.168.1.100”), AND(Instance="diary logbook prod”,
Day="Friday”)A

(winadmin, update, Logtable[[#Datal, [Status]]=["Passed”, ”In
progress”, "“"Rejectd”, ”“Failed”],

AND (Instance="diary logbook prod”, Day="Friday”)A

(winadmin, update, Logtablel[[#Datal, [Group]]="Windows”,

AND (Instance="diary logbook prod”, Day="Friday”)A

(winadmin, read, Worksheet.name="Logbook”,
Instance="diary logbook prod”)A

(winadmin, read, Worksheet.name="Dashboard”,

Instance="diary logbook prod”)

70

Similarly, IT Administrator for Linux servers access rules for ABAC4S protocol should be

structured as follows:

(linuxadmin, update, Logtablel[[#Data] [Date]l],

AND (Instance="diary logbook prod”, Day="Friday”)A

(linuxadmin, update, AND(Logtablel [#Datal, [IP
Address]1>7192.168.1.101"”,Logtable[[#Data], [IP
Address]]<”192.168.1.200”), AND(Instance="diary logbook prod”,
Day="Friday”))A

(linuxadmin, update, Logtablel[[#Data]l, [Status]]=["Passed”, ”In
progress”, "In progress”, "Failed”],

AND (Instance="diary logbook prod”, Day="Friday”))A
(linuxadmin, update, Logtable[[#Data], [Group]]="Linux”,

AND (Instance="diary logbook prod”, Day="Friday”))A
(linuxadmin, read, Worksheet.name="Logbook”,
Instance="diary logbook prod”)A

(linuxadmin, read, Worksheet.name="Dashboard”,

Instance="diary logbook prod”)

Finally, IT Administrator for networking infrastructure access rules for ABAC4S protocol

should be structured as follows:

(netadmin, update, Logtable[[#Data] [Datel],

AND (Instance="diary logbook prod”, Day="Friday”)A

(netadmin, update, AND (Logtablel[[#Datal, [IP
Address]1>7192.168.1.201"”,Logtable[#Data], [IP

Address]]<”192.168.1.300”), AND(Instance="diary logbook prod”,
Day="Friday”))A

(netadmin, update, Logtable[[#Datal, [Status]]=["Passed”, ”"In
progress”, ”“In progress”, "Failed”],

AND (Instance="diary logbook prod”, Day="Friday”))A

(netadmin, update, Logtablel[[#Datal, [Group]]="Network”,

AND (Instance="diary logbook prod”, Day="Friday”))A

71

(netadmin, read, Worksheet.name="Logbook”,
Instance="diary logbook prod”)A
(netadmin, read, Worksheet.name="Dashboard”,

Instance="diary logbook prod”)

With the above set of ABAC4S access rules for four different user groups, user’s behaviors
within diary logbook spreadsheet program are fully controlled and congruent with defined
business process. In addition, all specified spreadsheet structural requirements are satisfied with
the specified ABAC4S access rules. With combination of the environment attributes, complex
user’s roles and various timing constraints can be modelled for development and production

instances. The worksheet “Logbook” in developed spreadsheet “diary logbook prod.xlsx™ is

presented in Figure 18.

Logbook

Date IP Address Status Group

v
]

£
O

el N = e R T e

Dashboard

Figure 18. Logbook Worksheet

The worksheet “Dashboard” in developed spreadsheet “diary logbook prod.xlsx™ is
presented in Figure 19.

72

A
>
o
o]
[w)
m
hal
[

Dashboard
I Date Systems Passed In Progress Rejected Failed
2
I Windows
3
Linux
a
Network
5
9

Logbook Dashboard

Figure 19. Dashboard Worksheet

8.2. Calibrations of Sensors in Analytical Laboratory

Negative Temperature Coefficient (NTC) probe calibration spreadsheet is used daily within
analytical laboratory. Every Monday, a calibration expert performs checks of all 65 NTC probes
utilized in the laboratory. Dedicated excel spreadsheet file is used for each NTC probe due to
specific regulatory requirement. instance is managed for each calibration probe. In case, NTC
probe does not perform satisfactory, calibration expert initiates calibration procedure. For
cheaper NTC probes with lower accuracy, three-point Steinhart-Hart equation is used to
perform NTC probe calibration [62]. For expensive and accurate NTC probes, more complex
calibration procedure is performed with multiple measuring points used for Steinhart—Hart
equation. After completion of all NTC probes checks and calibration procedures, Laboratory
Manager reviews all calibration spreadsheets and if results of NTC probe calibration comply
with laboratory guidelines, Manager changes color of result cell and corresponding worksheet
to green as evidence of review and compliant status of NTC probes. Each Wednesday, the
laboratory administrator edits header labels and adds information about probe serial numbers
and information about calibration equipment used for NTC calibration. After completion, the
laboratory administrator prints calibrations results on preformatted stickers and attaches them
on probe housing. Based on the provided process description in place for calibration of NTC

probes, following spreadsheet structural requirements and user’s roles are defined:

e Spreadsheet developer should perform coding and development activities on separate

development instance named “ntc_calibration_dev” and after successful testing, this

73

development instance should be merged to production instance named
“ntc_calibration_prod”.

NTC calibration spreadsheet should contain two worksheets. First worksheet named
“NTC”, should contain input fields to enter NTC probe serial number and details of
calibration equipment used. Worksheet “NTC” should also contain three input fields to
enter measured temperatures and three input fields to enter measured NTC Probe
resistances. The last part of the worksheet NTC should be three fields presenting
calculated resulting Steinhart-Hart coefficients. All input fields should have associated
labels in the left column of input value and physical unit labels in right column of input
values. All input cells should be highlighted in light yellow color. All output cells should
be highlighted in light grey representing status before managerial review and in light
green color if laboratory manager confirms valid status of affected NTC probe. tln
second worksheet named “Calculation”, all calculation steps and intermediate formulas
should be entered reference with named ranges. Absolute and relative cell references
should be avoided. Links between input cells at worksheet NTC and calculation cells
should be also constructed with named ranges for all affected cells. All calculations
should be performed at the worksheet Calculation with results returned to worksheet
NTC with reference to named ranges representing determined Steinhart—Hart
coefficients.

Users with role of spreadsheet developer assigned are allowed to change and modify
layout, structure and content of “ntc_calibration dev” development instance of NTC
calibration spreadsheet. Spreadsheet developers are allowed to create and modify
worksheet Calculation on development instance of spreadsheet with all formulas used
to determine resulting coefficients. Formulas should be modularized to reflect
calculation steps required to determine final coefficients. After successful development
and testing, developer should create production instance “ntc_calibration prod” that
will be further used for laboratory calibration processes. In production instance
“ntc_calibration_prod”, developer should have view only authorizations.

Users with role of manager assigned should have update authorization on production
instance “ntc_calibration_prod” to modify background color of output cells in the NTC
worksheet. Allowed values for background color of output cells are light gray and light
green, with light green representing evidence of successful managerial review and

approval of calibration results.

74

Users with role of analyst should have update authorizations of input fields for
temperatures and resistance on production instance “ntc_calibration prod”. To ensure
that the calibration process follows defined standards for temperature ranges, allowed
temperature ranges for three calibration points are as follows:

o Temperature T1 allowed range: 0 - 10 °C.

o Temperature T2 allowed range: 20 - 30 °C.

o Temperature T3 allowed range: 80 - 90 °C.
Users with role of administrator assigned should have update authorizations of input
fields for NTC probe serial number and calibration equipment on production instance
“ntc_calibration_prod”. Administrative work on calibration spreadsheets is allowed on
Wednesday to ensure that both laboratory analysts and managers have enough time to
complete their tasks and all NTC probes are calibrated and ready for laboratory

processes during Thursdays and Fridays.

With the above description of the NTC probe calibration process and spreadsheet structural

requirements, developer access rules for ABAC4S protocol should be structured as follows:

(developer, create,

Instance="ntc calibration dev”)A

(developer, create,

ntc calibration dev”)A

(developer, create, NTC.

ntc calibration dev”)A

(developer, create, NTC.

ntc calibration dev”)A

(developer, create, NTC.

ntc _calibration dev”)A

(developer, create, NTC.

ntc _calibration dev”)A

(developer, create, NTC.

ntc _calibration dev”)A
NTC.

(developer, create,

ntc calibration dev”)A

C2.
C3
C6.name="T1",
C7.name="T2",
C8

.name="T3",

C1l.name="R1",

name="Serno”,

Worksheet .name="NTC”,

Worksheet .name="Calculation”,

.name="cal equipment”,

Instance="

Instance="

Instance="

Instance="

Instance="

Instance="

Instance="

75

(developer, create, NTC.ClZ2.name="R2”, Instance="

ntc calibration dev”)A

(developer, create, NTC.Cl3.name="R3”, Instance="

ntc calibration dev”)A

(developer, create, NTC.Cl7.name="CoeffA”, Instance="
ntc calibration dev”)A

(developer, create, NTC.Cl8.name="CoeffB”, Instance="
ntc calibration dev”)A

(developer, create, NTC.Cl9.name="CoeffC”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C2.name="T0”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C3.name="L1", Instance="
ntc calibration dev”)A

(developer, create, Calculation.C4.name="L2", Instance="
ntc calibration dev”)A

(developer, create, Calculation.C5.name="L3"”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C6.name="Y1”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C7.name="Y2”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C8.name="Y3”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.C9.name="22"”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.Cl0.name="723"”, Instance="
ntc calibration dev”)A

(developer, create, Calculation.Cll.name="C”, Instance="
ntc _calibration dev”)A

(developer, create, Calculation.Cl2.name="B”, Instance="
ntc _calibration dev”)A

(developer, create, Calculation.Cl3.name="A", Instance="

ntc calibration dev”)A

(developer, read, Worksheet.name="NTC”,
Instance="ntc calibration prod”)A
(developer, read, Worksheet.name="Calculation”,
Instance="ntc calibration prod”)
With the above description of the NTC probe calibration process and spreadsheet structural

requirements, manager access rules for ABAC4S protocol should be structured as follows:

(manager, update, Worksheet.name="NTC",

Instance="ntc calibration prod”)A

(manager, update, NTC.Cl7.backgroud color=["LightGrey”,
”"LightGreen”], Instance="ntc calibration prod”)A
(manager, update, NTC.Cl8.backgroud color=["LightGrey”,
”"LightGreen”], Instance="ntc calibration prod”)A
(manager, update, NTC.Cl9.backgroud color=["LightGrey”,
"LightGreen”], Instance="ntc calibration prod”)A
(manager, read, Worksheet.name="Calculation”,

Instance="ntc calibration prod”)

With the above description of the NTC probe calibration process and spreadsheet structural

requirements, analyst access rules for ABAC4S protocol should be structured as follows:

(analyst, update, Worksheet.name="NTC",
Instance="ntc calibration prod”)A

(analyst, update, TYPE(T1l)="Number”, Instance="
ntc calibration prod”)A

(analyst, update, TYPE(T2)="Number”, Instance="
ntc calibration prod”)A

(analyst, update, TYPE (T3)="Number”, Instance="
ntc calibration prod”)A

(analyst, update, TYPE (R1l)="Number”, Instance="
ntc calibration prod”)A

(analyst, update, TYPE (R2)="Number”, Instance="

ntc calibration prod”)A

77

(analyst, update, TYPE (R3)="Number”, Instance="
ntc calibration prod”)A
(analyst, read, Worksheet.name="Calculation”,

Instance="ntc calibration prod”)

Finally, administrator access rules for ABACA4S protocol should be structured as follows:

(administrator, update, Worksheet.name="NTC”,

Instance="ntc calibration prod”)A

(administrator, update, TYPE (Serno.value)="String”,

AND (Instance=" ntc calibration prod”, Day="Wednesday”)A
(administrator, update, TYPE (cal equipment.value)="String”,
AND (Instance=" ntc calibration prod”, Day="Wednesday”))A
(administrator, print, Worksheet.name="NTC”, AND (Instance="

ntc calibration prod”, Day="Wednesday”))

In case of administrator access rules, an example of extension to CRUD actions is
demonstrated. Administrator has action “print” specified in access rules which permits printing
of worksheet NTC on instance “ntc_calibration prod” every Wednesday. Worksheet NTC in

developed spreadsheet “ntc_calibration prod.xlsx™ is presented in Figure 20.

78

D

NTC Probe Ser.No.

Calibration Equipment

Input Temperatures

T1 °C

T2 °C

13 °C
Input Resistance

R1 Ohm

R2 Ohm

R2 Ohm

Resulting Coefficients

Coefficient A =A

Coefficient B =B

Coefficient C =C
NTC IeETENT +

Figure 20. NTC Worksheet

Worksheet Calculation in developed spreadsheet “ntc calibration prod.xlsx” is presented in

Figure 21.

79

T0|=273,15

L1{=LN(R1)

L2|=LN(R2)

L3 |=LN(R3)

Y1|=1/(T1+T0)
Y2|=1/(T2+T0)

Y3 =1/(T3+T0)

22 |=(Y2-Y1)/(L2-L1)

23 |=(Y3-Y1)/(L3-L1)
C|=((Z3-Z2)/(L3-L2))/(L1+L2+L3)
B|=Z2-C*(L1"2+L1*L2+L2/2)
Al=Y1-(B*C*(L1"2))*L1

MNTC Calculation +

Figure 21. Calculation Worksheet

For the ABACA4S access rules definitions presented in both use cases, users’ authorization
and structural spreadsheet resource properties are denoted as abstract comma separated
quadruples. These abstract data structures can be transformed into programming language data
structures or encoded to other formats like XML (eXtensible Markup Language) or JSON
(JavaScript Object Notation) messages during specific implementation scenarios. In Appendix
C., ABACA4S access rules defined in both cases are presented in JSON notation, commonly used

as message exchange format in enterprise IT systems.

8.3. Users’ Satisfaction with ABAC4S Protocol

Both cases of ABAC4S protocol were implemented during the period of 6 months. The
author of the research presented in this thesis acted as facilitator and trainer for all participants
with various spreadsheet roles during use cases with ABAC4S protocol practical
implementation. In total 59 spreadsheet users participated during the period of 6 months. To

evaluate spreadsheet users’ satisfaction with practical ABAC4S implementation and document

80

valuable lessons learned at the end of the experiment, simple questionnaire with following three
questions has been collected from all spreadsheet users:
e How satisfied were you with the use of ABAC4S protocol for your spreadsheets?
(response on 1-5 scale, where 1 equal “very dissatisfied” and 5 equal “very satisfied”).
e List positive examples, how ABAC4S protocol improved your work and overall
experience with spreadsheets? (open-ended question according to spreadsheet user
preferences).
e List negative examples, how ABAC4S protocol impacted negatively your work and
overall experience with spreadsheets? (open-ended question according to spreadsheet

user preferences).

All 59 spreadsheet users that participated in both uses cases with various roles specified
with ABACA4S access rules provided answers to formulated questions. To the first question
administered, majority of participant answered the question either a 4 or 5 (23 answers for
“satisfied” and 34 answers for “very satisfied”), indicting an overall positive experience with
ABACA4S protocol for spreadsheets. Two spreadsheet users answered the first question with 1
(“very dissatisfied”) indicating their disagreement with overall spreadsheet use for business
processes presented in two use cases. Specifically, both spreadsheet users indicated that full
featured Enterprise Resource Planning (ERP) system should be used as a replacement for
spreadsheet use in organizations.

The second and third questions were open-ended questions that did not offer a
predetermined set of answers, allowing spreadsheet users to answer in their own words positive
and negative experience with use of ABAC4S protocol for their spreadsheets. All collected
answers are listed in the following tables, without any specific order or rank associated with
collected answers. The author of this research considers collected responses a valuable source
ofuser’s feedback for future research. Positive experience with ABACA4S and collected answers

to the second question are presented in Table 7.

81

Table 7. Positive user experience with ABAC4S protocol

No.

Positive user experience with ABAC4S protocol

First impressions about ABAC4S access rule’s structure were negative, however after
a short period of usage and few access rules created from provided templates, initial
frustration vanished. In contrast, creation or modification of access rules helps with

documentation for actual job description.

ABACA4S access rules increased users’ satisfaction with laboratory processes and
clarified roles and responsibilities that users must demonstrate during the use of

spreadsheets.

Maintaining authorizations in other IT systems and applications is far more complex
and demands highly experienced IT administrator to transfer business roles to actual
authorizations with special syntax for each system. ABAC4S access rules are simple

to understand and maintain.

ABACA4S protocol for automated quality assurance of spreadsheet programs improved
compliance and regulatory status of analytical laboratory. Access rules were presented
to external auditors as evidence of proper access control and segregation of duties

between different users.

Documented and evaluated access rules improved laboratory documentation and

standard operating procedures.

ABACA4S access rules facilitate and speed up onboarding of new employees. Their
roles were documented with access rules and new employes could play on “sandbox”

spreadsheets before they start using production versions of spreadsheets.

ABACA4S protocol is invisible, and there are no changes in spreadsheet user interface.
Provided feedback from ABACA4S protocol is very granular, so the user knows what

must be corrected to return the spreadsheet in valid state.

Negative user’s experience with ABAC4S and collected answers to the third question are

presented in Table 8. Negative user experience with ABAC4S protocol

82

Table 8. Negative user experience with ABACA4S protocol

No. Negative user experience with ABAC4S protocol
1. | ABACA4S protocol access rules are two complex to understand and maintain.
2. | Detective ABAC4S protocol implementation is too slow. After the last change

submitted, feedback to the user should be provided faster, so that necessary corrections

can be made in spreadsheets.

Important to note in relation to second negative comment is that performance of python

scripts used for ABACA4S protocol computational logic was sometimes very slow. These scripts

are not ready for production use in enterprise environments and have been used primarily as a

proof-of-concept tool for the research presented in this thesis.

83

9. Conclusion and Further Research

In focus of the research presented in this thesis is automated quality assurance for
spreadsheets. Specifically, this thesis is structured around the novel ABAC4S (Attribute Based
Access Control for Spreadsheets) protocol designed for automated quality assurance of
spreadsheets in multi-user environments. In Chapter 1, the research methodology is presented
structured around design science research, formulated research goals and research hypothesis.
Comprehensive descriptions of research phases and expected outcomes are provided as part of
the defined research methodology. In Chapter 2, introduction to the spreadsheets is provided
with examples of publicly documented spreadsheet horror stories that constitute motivation for
research presented in this thesis. Chapter 3 provides a summary of related work in the field of
taxonomies for spreadsheet errors, automated detection of spreadsheet errors and controlled
access for spreadsheet users in modern enterprises. Afterwards, in Chapter 4, the ABAC4S
protocol is presented with descriptions of model components and protocol rules. In Chapter 5,
a brief introduction to model checking concepts is presented to establish foundation for Chapter
6 that provides formal verification of the proposed ABAC4S protocol with a symbolic model
checker. In Chapter 7, research related to spreadsheet quality assurance is introduced with
mapping of ABAC4S protocol characteristics to existing spreadsheet quality model and
automated approaches to spreadsheet quality assurance. In Chapter 8 of this thesis, two use
cases of ABACA4S protocol implementation are presented. The first case presents modeling of
ABACA4S access rules to support logging of IT administrator activities related to management
of key IT assets. In the second case, ABAC4S protocol was deployed to support calibration
processes for NTC measurement probes in analytical laboratory. For both cases, the complete
specifications of ABAC4S access rules are provided according to defined processes and user’s
job descriptions. Finally, this chapter provides critical discussions with reflection on conducted
research, key findings and contributions to the spreadsheet research knowledge base. This thesis
is accompanied by three appendices providing supplemental information to the research
presented. In Appendix A., structured tables references are provided to support ABAC4S
protocol access rules encoding presented in Chapter 4.5. In Appendix B., complete SMV source
code for ABACA4S protocol is provided as part of model checking verification presented in
Chapter 6. In Appendix C., examples of ABAC4S access rules in JSON format are provided to
support developed access rules presented in Chapter 8. of this thesis.

To address the first research goal, novel ABACA4S protocol for automated quality assurance

based on spreadsheet representation as a collection of resources has been developed. Defined

84

protocol addresses the need identified to control user’s interaction with spreadsheets on granular
level of spreadsheet resources in multi-user environments. In addition, ABAC4S protocol for
automated quality assurance of spreadsheet programs uniquely addresses both methods in focus
of quality assurance research, finding (detection) and avoiding (prevention) of spreadsheet
errors and quality issues. The formal specification of novel ABAC4S protocol for spreadsheet
has been provided with multi-faceted approach and combination of visual modeling,
specification of protocol building blocks with algebraic data structures and direct graph
representation.

To address the second research goal, defined ABAC4S protocol specifications has been
verified for correctness with the model checking approach. Detailed steps and research journey
from original ABAC4S protocol idea to formal specification of the protocol in applicable model
checking language have been presented during this research phase. During construction of
model checking specifications with SMV language, abstraction and refinement of model
characteristics have been utilized to reduce model complexity and prevent state space explosion
during verification with model checker. Representation with algebraic and graph data structures
during ABACA4S protocol design and development have been instrumental during conversion
to model checker SMV language and simulating transitions between spreadsheet states.
Modules in SMV language have been designed to represent all possible state transitions with
associated user’s actions and hierarchical tree like representation of spreadsheet resources.
Consequently, with state transitions for all possible combinations of user’s actions and
hierarchical representation of spreadsheet resources model checker verified all possible realistic
scenarios where users in multi-user environments might have assigned roles of various
complexities.

To address formulated research hypothesis, correctness property of the ABAC4S protocol
has been evaluated with CTL temporal logic specification AG (p — AF q) (18). This CTL
temporal logic specification evaluates all possible spreadsheet state changes for given user’s
roles. Model checking tool explores all possible traces in search of counterexample where
desired property formulated with research hypothesis is not satisfied. As demonstrated in
Chapter 6., NuSMV model checker evaluates CTL temporal logic specification to true, thus
formally verifying that property formulated in research hypothesis holds, under assumption of
correct SMV model specification.

Multiple challenges with model abstraction and state space explosion have been addressed
during simulation with the model checking tool. Specifically, the reduction in ABAC4S

protocol complexity based on single root path definition introduced in Chapter 4.3.4 of this

85

thesis has been instrumental for successful verification with a model checking approach without
loss of model generality and correctness. Even though verification with model checker has been
reduced to bare minimum representation of single root path for each spreadsheet resource, in
case of 4 allowed actions and 4 different user roles, the model checking tool must explore 16’
(more than 268 million) possible states. To illustrate the importance of appropriate model
abstraction and its impact on the state space explosion, in case the number of modeled actions
and user roles increases to five, possible explorable state would grow to 257. This small increase
in model complexity resulted in a more than 22 times larger model state space that must be
explored with model checking tool.

Spreadsheet related research is a rich knowledge base with great scientific contributions.
Results of the research presented in this thesis related to automated quality assurance for
spreadsheets used in multi-user environments could usefully be combined with unit errors
detection in spreadsheet [18], other commercial spreadsheet auditing tools [20] and modern
large language models utilized to improve spreadsheet quality [22]. Research presented in this
thesis contributes to spreadsheet research knowledge base with following:

e Novel ABACA4S protocol for automated quality assurance of spreadsheets in multi-user
environments uniquely addresses both methods in focus of automated quality assurance
research, finding (detection) and avoiding (prevention) of spreadsheet errors and quality
issues.

e A multi-faceted approach to formal specification of ABACA4S protocol allows clear
communication of research deliverables to thesis readers and other researchers focused
on exciting research related to spreadsheets.

e Application of the model checking technique in verification of spreadsheet related
research problems brings new perspective in spreadsheet research. This thesis presented
modeling guidelines and insights into how to convert ABAC4S protocol specifications
to the language accepted by the model checking tool.

e The ABACA4S protocol has been designed with user-centric approach to minimize
impact on existing spreadsheet use in multi-user environments. This approach permits
organizations to retain investment in their spreadsheets.

e Two use cases presented as part of the research suggest concrete ways for deploying

ABACA4S protocol in other multi-user environments.

86

Despite advancements in understanding and mitigating spreadsheet risks, the dynamic and
often ad hoc nature of spreadsheet life cycle phases continue to present challenges.
Opportunities to further automate the generation of machine-readable user’s access rules and
implementation of ABAC4S protocol for automated quality assurance of spreadsheets in
various multi-user environments will be explored in future research. Other possible directions
for future research will include the integration of ABAC4S protocol with artificial intelligence
methods for spreadsheet code suggestion and syntax reconstruction. Ultimately, ensuring
spreadsheet quality is not merely a technical exercise but a critical component of informed and
robust organizational functioning. I believe that ABACA4S protocol for automated quality
assurance of spreadsheets in multi-user environments is one step in the right direction towards
organizational cultures that prioritize spreadsheet quality as a fundamental aspect of data

governance and decision-making.

87

References

[1]

2]

[10]

[11]

C. Scaffidi, M. Shaw, and B. A. Myers, "Estimating the numbers of end users and end
users programmers", In Proc. of VL/HCC '05, pp. 207-214, 2005.

L. Bradley and K. McDaid, “Using Bayesian Statistical Methods to Determine the Level
of Error in Large Spreadsheets”, Proceedings of the International Conference on Software

Engineering, pp. 351-354., 2009.

T. Reschenhofer and F. Matthes, “A Framework for the Identification of Spreadsheet

Usage Patterns”, Proceedings of the European Conference on Information Systems, 2015.

K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards, “Quality Control in
Spreadsheets: A Software Engineering-Based Approach to Spreadsheet Development,”
Proc. 33rd Hawaii Int’l Conf. System Sciences, pp. 1-9, 2000.

P. O’Beirne, F. Hermans, T. Cheng, M. P. Campbell, European Spreadsheet Risk Interest
Group, “https://eusprig.org/research-info/horror-stories/”, [Accessed: Feb. 23, 2025].

M. Zdilar, “Attribute Based Access Control Metamodel for Spreadsheet Programs”, 35th
International Scientific Conference CECIIS 2024. Varazdin: University of Zagreb,
Faculty of Organization and Informatics, pp. 409-416., 2024.

P. Brown, J. Gould, “An experimental study of people creating spreadsheets”, ACM
Transactions on Office Information Systems 5, pp.258-272, 1987.

W. J. Doherty, W. Pope, “Computing as a tool for human augmentation”, IBM Tech Rep.
RC-11622, 1986.

F. Galletta, D. Abraham, M. El Louadi, W. Leske, Y. Pollalis and J. Sampler, “An
empirical study of spreadsheet error-finding performance”, Accounting, Management &

Information Technology Vol. 3 No. 2, pp. 79-95, 1993.

R. Panko and R. Halverson, “Spreadsheets on trial: a survey of research on spreadsheet
risks”, Proceedings of the 29th Annual Hawaii International Conference on Systems

Sciences, pp. 326335, 1996.

S. G. Powell, K. R. Baker and B. Lawson, “A critical review of the literature on

spreadsheet errors”, Decision Support Systems, pp. 128-138, 2008.

88

[12] K. Rajalingham, D. Chadwick, B. Knight, “Classification of spreadsheet errors”,
Proceedings of the European Spreadsheet Risks Interest Group Annual Conference,

Greenwich, England, pp. 23-34, 2000.

[13] P. O’Beirne, “In Pursuit of Spreadsheet Excellence”, Proceedings of EuSpRIG, pp. 171-
185, 2008.

[14] J. Cunha, J. Fernandes, C. Peixoto and J. Saraiva, “A Quality model for Spreadsheets”,
Proceedings of the 8th International Conference on the Quality of Information and

Communications Technology, pp. 231-236, 2012.

[15] ISO (2001), “ISO/IEC 9126-1: Software engineering-product quality-part 1: Quality

model,” Geneva, Switzerland, 2001.

[16] M. Erwig and M. M. Burnett, “Adding apples and oranges”, In Proc. Of PADL '02, pp.
173-191, 2002.

[17] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A type system for statically
detecting spreadsheet errors”, In Proc. of ASE '03, pp. 174-183, 2003.

[18] R. Abraham and M. Erwig. “Ucheck: A spreadsheet type checker for end users. Journal
of Visual Languages and Computing”, Vol. 18, pp. 71-95, 2007.

[19] R. Abraham, M. Erwig, and S. Andrew, “A type system based on enduser vocabulary”, In
Proc. of VL/HCC, pp. 215-222, 2007.

[20] D. Nixon, M. O’Hara, “Spreadsheet Auditing Software”, In Proc. Of EuSpRIG, 2000.

[21] R. Abraham and M. Erwig, “Mutation Operators for Spreadsheets”, IEEE Transactions on
Software Engineering”, Vol. 35 No. 10, 2009.

[22] H. Joshi, A. Ebenezer, J. Cambronero, S. Gulwani, A. Kanade, V. Lee, ... & G.
Verbruggen, “FLAME: A small language model for spreadsheet formulas”, arXiv
preprint arXiv:2301.13779, 2023.

[23] M. Korman, R. Lagerstrom, M. Ekstedt, “Modeling enterprise authorization: a unified
metamodel and initial validation.” Complex Systems Informatics and Modeling Quarterly,

(7), 1-24, 2016.

[24] C. T. Hu, “Attribute based access control (ABAC) definition and considerations.”, NIST,
2014.

89

[25] A. Cimati, E. Clarke, F. Giunchiglia, M. Roveri, “NuSMV: A new symbolic model
verifier”, Computer Aided Verification: 11th International Conference, CAV’99 Trento,

Italy, July 6-10, 1999 Proceedings 11 (pp. 495-499). Springer Berlin Heidelberg, 1999.
[26] E. M. Clarke, O. Grumberg, D. Peled, “Model Checking”, MIT Press, 2000.
[27] J. G. Hoizmann, “Design and Validation of Computer Protocols”, Prentice Hall, 1991.
[28] C. Baier, J. P. Katoen, “Principles of Model Checking”, MIT Press, 2008.

[29] E. M. Clarke, E. A. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic”, Workshop on Logic of Programs, ser. Lecture Notes in

Computer Science, vol. 131, pp. 52-71., 1981.

[30] E. A. Emerson, E. M. Clarke, “Characterizing correctness properties of parallel programs
using fixpoints,” In Proceedings of the 7th Colloquium on Automata, Languages and

Programming, pp. 169-181., 1980.

[31] T. Reinbacher, “Model checking and static analysis of Intel MCS-51 Assembly Code”,
Wien, 2012.

[32] K. McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.

[33] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen,
“Systems and software verification: model-checking techniques and tools”, Springer

Science & Business Media, 2013.
[34] M. Zdilar, “https://github.com/mirogit/abac-spreadsheets”, GitHub repository, 2025.

[35] A. R. Hevner, S.T. March, J. Park, S. Ram, “Design Science-Design Science in
Information Systems Research”, MIS Quarterly 28, pp.75-105, 2004.

[36] G. Vitagliano, L. Reisener, L. Jiang, M. Hameed, F. Neumann, “Mondrian: Spreadsheet
layout detection”, In Proceedings of the 2022 International Conference on Management

of Data, pp. 2361-2364., 2022.

[37] S. Aurigemma, R. R. Panko, “The detection of human spreadsheet errors by humans

versus inspection (auditing) software”, In Proc. Of EuSpRIG, 2010.

[38] R. Butler, “Is this spreadsheet a tax evader?”, Proceedings of the 33" Hawaii International

Conference on System Sciences, pp. 1-6, 2000.

[39] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, “A review of access control metamodels”,
Procedia Computer Science, 184, 445-452., 2021.

90

[40] D.D. Downs, J. R. Rub, K. C. Kung, C. S. Jordan, “Issues in discretionary access control”,
In 1985 IEEE symposium on security and privacy, pp. 208-208, IEEE, 1985.

[41] Y. Dholakia, “Mandatory Access Control — Problems in it and propose a model which
overcomes them”, International Research Journal of Engineering and Technology

(IRJET), (4)4, pp.2031-2035, 2017.

[42] E. O. Boadu, G. K. Armah, K. “Role-based access control (RBAC) based in hospital
management”, Int. J. Softw. Eng. Knowl. Eng, 3, 53-67., 2014.

[43] C. Gross, “Announcing LAMBDA Helper Functions: Lambdas as arguments and more.
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-helper-

functions-lambdas-as-arguments-and-more/ba-p/2576648”, (June 10, 2024).

[44] P. Bartholomew, P. “Excel as a Turing-complete Functional Programming Environment”,

arXiv preprint arXiv:2309.00115, 2023.

[45] “https://ecma-international.org/publications-and-standards/standards/ecma-376/,

ECMA International, [Accessed: Jun. 03, 2025].

[46] C. Hatmaker, “Reducing Errors in Excel Models with Component-Based Software
Engineering”, arXiv preprint arXiv:2309.00650, 2023.

[47] Announcing Python in Excel: Combining the power of Python and the flexibility of Excel.
“https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-

combining-the-power-of-python-and-the/ba-p/3893439”, [Accessed: Jun. 03, 2025].

[48] T. Reschenhofer, B. Waltl, K. Shumaiev, F. Matthes, “A conceptual model for measuring
the complexity of spreadsheets”, arXiv preprint arXiv:1704.01147, 2017.

[49] “https://support.microsoft.com/en-us/office/error-type-function-10958677-7c¢8d-4417-
ae77-b9a%eebeefaa”, Microsoft Excel Error Types, [Accessed: Jun. 03, 2025].

[50] “https://support.microsoft.com/en-us/office/using-structured-references-with-excel-
tables-f5ed2452-2337-4f71-bed3-c8ac6d2b276¢e”, Microsoft Excel structure references
with Excel tables, [Accessed: Jun. 03, 2025].

[51] Peixoto, Christophe Campos, "Quality Model for Spreadsheets: Design and
Implementation. MS thesis®, Universidade do Minho (Portugal), 2011.

91

[52] E. Aivaloglou, D. Hoepelman, F. Hermans, "A grammar for spreadsheet formulas
evaluated on two large datasets." 2015 IEEE 15th International Working Conference on

Source Code Analysis and Manipulation (SCAM). IEEE, 2015.

[53] IEEE Computer Society, “IEEE Standard Classification for Software Anomalies”, In:
IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), pp. 1-23 (cit. on p. 1), 2010.

[54] G. Van Rossum, F. L. Drake, “Python 3 Reference Manual”, Scotts Valley, CA:
CreateSpace, 2009.

[55] A. Hagberg, P. Swart, D. Chult, “Exploring network structure, dynamics, and function
using NetworkX”, (No. LA-UR-08-05495; LA-UR-08-5495) Los Alamos National Lab.
(LANL), Los Alamos, NM (United States), 2008.

[56] M. Vento, "A long trip in the charming world of graphs for pattern recognition". Pattern
Recognition, 48(2):291-301., 2015.

[57] Zeina Abu-Aisheh, et al. "An exact graph edit distance algorithm for solving pattern
recognition problems." 4th International Conference on Pattern Recognition Applications

and Methods 2015. 2015.

[58] V. L. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals.”, Doklady Akademii Nauk SSSR, 163(4), 845-848., 1965.

[59] K. Riesen, S. Fankhauser, H. Bunke, “Speeding up graph edit distance computation with
a bipartite heuristic.”, In Mining and Learning with Graphs, MLG 2007, Proceedings.,
2007.

[60] “https://www.iso.org/quality-management/quality-assurance”, Quality assurance: A

critical ingredient for organizational success, [Accessed: Jun. 03, 2025].

[61] M. Fowler. “Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[62] Steinhart, John S., and Stanley R. Hart. "Calibration curves for thermistors." Deep sea

research and oceanographic abstracts. Vol. 15. No. 4. Elsevier, 1968.

[63] Dietmar Jannach, et al. "Avoiding, finding and fixing spreadsheet errors—A survey of
automated approaches for spreadsheet QA." Journal of Systems and Software 94 (2014):
129-150., 2014.

92

APPENDIXES

93

Appendix A. Structured Tables References

Syntax and for structured tables references are defined in table Table 9. [50].

Table 9. Structured Tables References

Item Specifier

Refers to:

#AIl The entire table, including column headers, data, and totals
(if any).
#Data Just the data rows.
#Headers Just the header row.
#Totals Just the total row. If none exists, then it returns null.
#This Row Just the cells in the same row as the formula. These
or specifiers can't be combined with any other special item
@ specifiers. Use them to force implicit intersection behavior
or for reference or to override implicit intersection behavior
@/[Column Name] and refer to single values from a column.

Excel automatically changes #This Row specifiers to the
shorter (@ specifier in tables that have more than one row of
data. But if your table has only one row, Excel doesn't
replace the #This Row specifier, which may cause
unexpected calculation results when you add more rows. To
avoid calculation problems, make sure you enter multiple
rows in your table before you enter any structured reference

formulas.

94

Appendix B. SMV Source Code

MODULE spreadsheet t ()

VAR
attributes:{s al,s aZ2};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};
add in:add in t();
named object:named object t();
worksheet:worksheet t();

MODULE add in t ()

VAR
attributes:{a al,a aZ2};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};

MODULE named object t ()

VAR
attributes:{no al,no a2};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};

MODULE worksheet t ()

VAR
attributes:{ws al,ws aZ2};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};
table:table t();
cell:cell t();

MODULE table t ()
VAR
attributes:{t al,t aZ};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};
cell:cell t();

MODULE cell t()

VAR
attributes:{c _al,c_aZ2};
role: {developer, tester,analyst,manager};
a:{create, read,update,delete};

95

formula:formula t();

MODULE formula t ()

VAR
attributes:{f al,f aZ2};
role: {developer, tester,analyst, manager};
a:{create, read,update,delete};

MODULE main
VAR
spreadsheet:spreadsheet t();

ASSIGN

next (spreadsheet.add in.a) :=

case

(spreadsheet.role=spreadsheet.add in.role) & \
(spreadsheet.a=read) & (spreadsheet.add in.a in \
{update,create,delete}) : read;

(spreadsheet.role=spreadsheet.add in.role) & \
(spreadsheet.a=update) & (spreadsheet.add in.a in \
{read, create,delete}) : update;

(spreadsheet.role=spreadsheet.add in.role) & \
(spreadsheet.a=delete) & (spreadsheet.add in.a in \
{read, create,update}) : delete;

(spreadsheet.role=spreadsheet.add in.role) & \
(spreadsheet.a=create) & (spreadsheet.add in.a in \

{read,update,delete}) : create;
TRUE : spreadsheet.add in.a;
esac;

next (spreadsheet.named object.a) :=

case

(spreadsheet.role=spreadsheet.named object.role) & \
(spreadsheet.a=read) & (spreadsheet.named object.a in \
{update, create,delete}) : read;

(spreadsheet.role=spreadsheet.named object.role) & \
(spreadsheet.a=update) & (spreadsheet.named object.a in \
{read,create,delete}) : update;

(spreadsheet.role=spreadsheet.named object.role) & \
(spreadsheet.a=delete) & (spreadsheet.named object.a in \
{read, create,update}) : delete;

96

(spreadsheet.role=spreadsheet.named object.role) & \
(spreadsheet.a=create) & (spreadsheet.named object.a in \
{read,update,delete}): create;

TRUE : spreadsheet.named object.a;

esac;

next (spreadsheet.worksheet.a) :=

case

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=read) & (spreadsheet.worksheet.a in \
{update, create,delete}) : read;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=update) & (spreadsheet.worksheet.a in \
{read, create,delete}) : update;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=delete) & (spreadsheet.worksheet.a in \
{read, create,update}): delete;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.a=create) & (spreadsheet.worksheet.a in \

{read,update,delete}) : create;
TRUE : spreadsheet.worksheet.a;
esac;

next (spreadsheet.worksheet.table.a) :=

case

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)\
& (spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \
(spreadsheet.worksheet.table.a in {update,create,delete}):
read;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role) \
& (spreadsheet.a=update) & (spreadsheet.worksheet.a=update) &\
(spreadsheet.worksheet.table.a in {read,create,delete}):
update;

(spreadsheet.role=spreadsheet.worksheet.role) &\
spreadsheet.worksheet.role=spreadsheet.worksheet.table.role) &\
(spreadsheet.a=delete) & (spreadsheet.worksheet.a=delete) &\
(spreadsheet.worksheet.table.a in {read, create,update}) :
delete;

(spreadsheet.role=spreadsheet.worksheet.role) &
(spreadsheet.worksheet.role=spreadsheet.worksheet.table.role)

97

& (spreadsheet.a=create) & (spreadsheet.worksheet.a=create) &
(spreadsheet.worksheet.table.a in {read,update,delete}):
create;

TRUE : spreadsheet.worksheet.table.a;

esac;

next (spreadsheet.worksheet.cell.a) :=

case

(spreadsheet.role=spreadsheet.worksheet.role) &\
spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\
(spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \
(spreadsheet.worksheet.cell.a in {update,create,delete}):
read;

(spreadsheet.role=spreadsheet.worksheet.role) & \
spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\
(spreadsheet.a=update) & (spreadsheet.worksheet.a=update) &\
(spreadsheet.worksheet.cell.a in {read,create,delete}):
update;

(spreadsheet.role=spreadsheet.worksheet.role) &\
(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\
(spreadsheet.a=delete) & (spreadsheet.worksheet.a=delete) &\
(spreadsheet.worksheet.cell.a in {read,create,update}):
delete;

(spreadsheet.role=spreadsheet.worksheet.role) & \
(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\
(spreadsheet.a=create) & (spreadsheet.worksheet.a=create) &\
(spreadsheet.worksheet.cell.a in {read,update,delete}):
create;

TRUE : spreadsheet.worksheet.cell.a;

esac;

next (spreadsheet.worksheet.cell.formula.a)

case

-- hierarchy resolution

(spreadsheet.role=spreadsheet.worksheet.role) &\
(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.role) &\
(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.cell. \
formula.role) & (spreadsheet.a=read) & \
(spreadsheet.worksheet.a=read) & \
(spreadsheet.worksheet.cell.a=read) & \
(spreadsheet.worksheet.cell.formula.a in
{update,create,delete}) : read;

98

(spreadsheet.role=spreadsheet.worksheet.role) &\

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.
(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.

formula.role) & (spreadsheet.a=update) & \

(spreadsheet.worksheet.a=update) & \

(spreadsheet.worksheet.cell.a=update) & \

(spreadsheet.worksheet.cell.formula.a in

{read, create,delete}): update;
(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.
(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.

formula.role) & (spreadsheet.a=delete) & \

(spreadsheet .worksheet.a=delete) & \

(spreadsheet.worksheet.cell.a=delete) & \

(spreadsheet.worksheet.cell.formula.a in

{read, create,update}): delete;
(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role=spreadsheet.worksheet.cell.
(spreadsheet.worksheet.cell.role=spreadsheet.worksheet.

formula.role) & (spreadsheet.a=create) & \
(spreadsheet .worksheet.a=create) & \
(spreadsheet.worksheet.cell.a=create) & \
(spreadsheet.worksheet.cell.formula.a in

{read,update,delete}) : create;
TRUE : spreadsheet.worksheet.cell.formula.a;
esac;

role) &\
cell. \

role) &\
cell. \

role) &\
cell. \

99

Appendix C. Example of ABAC4S Access Rules in JSON format

Examples of ABACA4S access rules defined in use cases are presented here in JSON format,

commonly used as message exchange format in enterprise IT systems.

Table 10. Developer access rules in JSON format

"user": "developer",
"action": "create",
"Worksheet .name" : "Logbook",
"environment": {

"instance": "diary logbook dev"

"user": "developer",
"action": "create",
"Worksheet.name" :"Dashboard",
"environment": {

"instance": "diary logbook dev"

"user": "developer",
"action": "create",
"Logbook.Table.name":"Logtable",
"environment": {

"instance": "diary logbook dev"

"user": "developer",
"action": "create",
"Logbook.Table.name" :"MaintenanceStatus",
"environment": {
"instance": "diary logbook dev"

"user": "developer",
"action": "create",

100

"Logtable [#Headers]": [
"Seq",
"Date",
"IP Address",
"Status",
"Group"
1y
"environment": {
"instance": "diary logbook dev"

"user": "developer",
"action": "create",
"MaintenanceStatus [#Headers]": [
"Date",
"Win Passed",
"Win In Progress",
"Win Rejected",
"Win Failed",
"Linux Passed",
"Linux In Progress",
"Linux Rejected",
"Linux Failed",
"Network Passed",
"Network In Progress",
"Network Rejected",
"Network Failed"
1y
"environment": {
"Instance": "diary logbook dev"

"user": "developer",
"action": "create",
"Logtable[[#Data], [Status]]": [
"Passed",
"In Progress",
"Rejected",
"Failed"
I
"environment": {
"Instance": "diary logbook dev"

101

"user": "developer",

"action": "create",

"Logtable[[#Data], [Group]]": [
"Windows",

"Linux",

"Network"
I
"environment": {

"Instance": "diary logbook dev"
}
"user": "developer",
"action": "read",
"Worksheet.name" : "Logbook",
"environment": {

"instance": "diary logbook prod"
}
"user": "developer",
"action": "read",
"Worksheet .name" :"Dashboard",
"environment": {

"instance": "diary logbook prod"

Table 11. Manager access rules in JSON format

"user": "manager",
"action": "update",
"Worksheet .name" :"NTC",
"environment": {
"instance": "ntc calibration prod"

102

"user": "manager",

"action": "update",

"NTC.Cl7.backgroud color":[
"LightGrey",
"LightGreen"

I

"environment": {
"instance": "ntc calibration prod"

"user": "manager",

"action": "update",

"NTC.Cl8.backgroud color":[
"LightGrey",
"LightGreen"

I

"environment": {
"instance": "ntc calibration prod"

"user": "manager",

"action": "update",

"NTC.Cl9.backgroud color":[
"LightGrey",
"LightGreen"

I

"environment": {
"instance": "ntc calibration prod"

"user": "manager",
"action": "read",
"Worksheet .name":"Calculation",
"environment": {
"instance": "ntc calibration prod"

103

Table 12. Analyst access rules in JSON format

"user": "analyst",
"action": "update",
"Worksheet.name" :"NTC",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "update",
"TYPE (T1)":"Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "update",
"TYPE (T2) " :"Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "update",
"TYPE (T3) " :"Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "update",
"TYPE (R1) " : "Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",

104

"action": "update",
"TYPE (R2) " : "Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "update",
"TYPE (R3) ": "Number",
"environment": {
"instance": "ntc calibration prod"

"user": "analyst",
"action": "read",
"Worksheet .name":"Calculation",
"environment": {
"instance": "ntc calibration prod"

Table 13. Administrator access rules in JSON format

"user": "administrator",
"action": "update",
"Worksheet .name" :"NTC",
"environment": {
"operator": "AND",
"criteria": [
{
"field": "instance",
"operator": "=",
"value": "ntc calibration prod"

bo

{

"field": "day",
"operator": "=",
"value": "Wednesday"

}

105

"user": "administrator",

"action": "update",
"TYPE (Serno.value)":"String",
"environment": {
"operator": "AND",
"criteria": |
{
"field": "instance",
"operator": "=",
"value": "ntc calibration prod"

by
{
"field": "day",

"operator": "=",
"value": "Wednesday"
}
]
}
by
{
"user": "administrator",
"action": "update",
"environment": {
"operator": "AND",
"criteria": [
{
"field": "instance",
"operator": "=",
"value": "ntc calibration prod"

ty
{
"field": "day",

"operator": "=",
"value": "Wednesday"
}
]
}
b
{
"user": "administrator",
"action": "print",

106

"Worksheet.name" :"NTC",

"environment": {
"operator": "AND",
"criteria": [
{
"field": "instance",
"operator": "=",
"value": "ntc calibration prod"

bo

{

"field": "day",
"operator": "=",
"value": "Wednesday"

}

107

Cv

Miro Zdilar was born on 24" of June 1970 in Pula, Croatia. He finished elementary school
“Vladimir Nazor” in Krizevci, and technical school “Ruder Boskovi¢” in Zagreb, Croatia. He
graduated in 1995 from the Faculty of Electrical Engineering and Computing of the University
of Zagreb with the thesis cro. “Analiza slike neuronskom mrezom” (eng. “Perceptron Neural
Network for Pattern Recognition”’) and mentor Academic Professor Sven Loncari¢, PhD. Miro
Zdilar continued his research and postgraduate studying at the Faculty of Electrical Engineering
and Computing of the University of Zagreb where he earned Master of Science degree in 2011
with the thesis cro. “Transakcijski protokoli za usluzno usmjerenu arhitekturu” (eng.
“Transaction protocols for service oriented architecture”) and mentor Academic Professor
Ignac Lovrek, PhD. During 2007 he enrolled in the in-company Master of Business
Administration (MBA) study program at Rotterdam School of Management Erasmus
University. He graduated in 2009 with the thesis “Intranet Knowledge Sharing-Implementation
of the GMP Training Reinforcement Pilot” and mentor Professor H.P. Borgman, PhD. During
2019 he enrolled in the postgraduate doctoral study of Information Science, at the Faculty of
Organization and Informatics of the University of Zagreb. He currently works as a Chief
Information Security Officer (CISO) at the Raiffeisenbank Austria dd, Zagreb. His fields of
interest are spreadsheet engineering, automated verification techniques and data analysis. He is

married and has two children.

List of scientific publications

[1] Miro Zdilar, “Model Checking Access Control Protocol for Spreadsheets”, Journal of
information and organizational sciences, Vol. 49 No. 1, (2025), 39-52.

https://doi.org/10.31341/ji0s.49.1.3

[2] Miro Zdilar, “Attribute Based Access Control Metamodel for Spreadsheet
Programs.” 35th International Scientific Conference CECIIS 2024. Varazdin: University
of Zagreb, Faculty of Organization and Informatics, 2024.

[3] Miro Zdilar, “Towards Automated Detection of Qualitative Spreadsheet Errors in Multi-
user Environments.” 34th Central European Conference on Information and Intelligent

Systems (CECIIS 2023), 2023.

[4] Miro Zdilar, “Transakcijski protokoli za usluzno usmjerenu arhitekturu.”, Dissertation
University of Zagreb. Faculty of Electrical Engineering and Computing. Department of

Telecommunications, 2011.

List of professional publications

[1] Miro Zdilar, “Revizija procesa razvoja sustava (SDLC)”, I. Konferencija internih revizora

“Razvoj i izazovi interne revizije”, Opatija, 2009.

