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Abstract

Abstract in English
Multi-agent systems (MASs) are valuable in performing complex tasks that require autonomy.
As the number of agents in such a system increases, more levels of complexity must be
addressed to enable coordinated functioning. One of the challenges is the specification of
communication flows. Agents exchange messages via communication channels to inform
each other about their requests (for data, task execution, or similar) or their current
status (whether they are processing or ready to take on a task). Therefore, specifying
communication flows is crucial for achieving cohesion between agents. Since agents are
autonomous and independent units, traditional design approaches involve implementing
communication flows and business logic individually for each agent. This leads to redund-
ant, unstable, less readable, and less extensible code, particularly when agents within a
MAS are considered as a whole. A proposed solution to this problem is the construction of
a programming language for specifying communication flows, based on process calculus,
coupled with the development of a declarative engine. This engine is capable of processing
these specifications and coordinating their execution. This programming language allows
engineers to define communication flows between agents, ensuring consistency in commu-
nication and enabling orchestration within the MAS
Keywords. multi-agent systems, orchestration, intelligent agents

Abstract in Croatian
Višeagentni sustavi (VAS) korisni su u izvođenju kompleksnih zadataka koji iziskuju auto-
nomnost. Što je broj agenata u nekom sustavu veći, to je veći broj razina kompleksnosti
koje je potrebno uzeti u obzir kako bi se omogućilo koordinirano funkcioniranje sustava.
Jedan od izazova je i specifikacija komunikacijskih tokova. Agenti razmjenjuju poruke pu-
tem komunikacijskih kanala kako bi se međusobno obavijestili o zahtjevima (o podacima,
rješavanju zadataka, ili slično) ili pak njihovom statusu (izvršavaju li trenutno neki zada-
tak, ili su slobodni za novi zadatak). Stoga je specifikacija komunikacijskih tokova važna
za ostvarenje kohezije u radu agenata. S obzirom da su agenti autonomne i nezavisne
jedinke, tradicionalni pristupi implementaciji komunikacijskih tokova i poslovne logike
implementiraju iste za svakog agenta zasebno. To dovodi do redundantnosti kôda, nesta-
bilnosti, smanjene čitljivosti te slabe proširivosti, posebice kada se agenti u višeagentnom
sustavu promatraju kao cjelina. Predloženo rješenje za ovaj problem jest u razvoju pro-
gramskog jezika za specifikaciju komunikacijskih tokova baziranom na procesnom računu
te razvoju deklarativnog stroja. Deklarativni stroj zaslužan je za procesuiranje speci-
fikacija te koordinaciju njihovog izvršavanja. Programskih jezik omogućuje da inženjer
specificira komunikacije tokove među agentima što rezultira konzistentnost u komunikaciji

i



te mogućnost orkestracije agenata u VAS-u.
Ključne riječi. višeagentni sustavi, orkestracija, inteligentni agenti
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Prošireni sažetak na hrvatskom
jeziku

Uvod i pregled dosadašnjih istraživanja

Višeagentni sustav (VAS) može se opisati kao klaster većeg broja međusobno povezanih
agenata koji zajedničkim djelovanjem nastoje doći do rješenja zadanog problema, kojeg
pojedinačno nebi mogli ostvariti. S obzirom na karakteristike autonomnosti te interakcije
s drugim jedinkama, agent se također može promatrati kao heterogeni mikroservis [122,
58]. Agenti u VAS-u komuniciraju kako bi razmijenili informacije koje bi drugoj strani
mogle biti korisne u obavljaju svojih zadataka. Iz tog razloga, orkestracija agenata pos-
taje uvelike važna za postizanje očekivanih ishoda [54]. U slučaju gdje veći broj VAS-a
sudjeluje u komunikaciji, često se koristi koncept holonskih sustava. Spomenuti koncept
predlaže da postoji reprezentativni agent VAS-a (holon) koji je odgovoran za komunikaciju
s vanjskim holonima te isto tako prosljeđuje poruke odgovarajućim agentima unutar svog
holona [25]. Budući da je agent samostalna i neovisna jedinka, za svaku jedinku se komu-
nikacijski mehanizmi implementiraju pojedinačno što uzrokuje redundanciju programskog
kôda, manju stabilnost, manju čitljivost te proširivost pri opservaciji cjelokupnog VAS-a
što dovodi do otežane orkestracije agenata [54]. U kontekstu ovog istraživanja, orkestra-
cija agenata odnosi se na konzistentnu specifikaciju komunikacijskih tokova između parova
agenata, čime se implicira da je svaki agent dizajniran za međusobnu komunikaciju.

Prethodno opisani izazovi u dizajnu komunikacijskih tokova u VAS-u primarni su
motiv za provođenje ovog istraživanja. Kako bi se poduprlo istraživanje, analizirane su
dvije domene literature: znanstveni radovi te prakse iz industrije. Ove domene prepoznate
su kao relevantne jer uključuju pristupe koji se razmatraju sa znanstvenog stajališta, ali
i pristupe slučajeva korištenja iz realne domene.

Scopus [27], WoS [21] i IEEE Xplore [43] su baze podataka koje su pretražene s ci-
ljem pronalaska znanstvenih radova. Analizirani su radovi koji imaju najveći broj citata
u domeni komunikacijskih tokova VAS-a. Primjerice, Corkill [24] predlaže koncept emi-
tiranja poruka, gdje svaki agent šalje poruke svim ostalim agentima u VAS-u, pri čemu
svaki agent samostalno implementira mehanizme filtriranja poruka koje za njega nisu rele-
vantne. Ovaj pristup donosi fleksibilnost u dizajnu i implementaciji agenata, ali ne uzima
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u obzir smanjene performanse zbog povećanog prometa poruka. Goldman i Zilberstein
[33] nadograđuju ideju na konceptu emitiranja poruka, uzimajući u obzir činjenicu da
eksterni agenti (izvan promatranog VAS-a) vjerojatno nisu prilagođeni za filtriranje po-
ruka koje im nisu relevantne. Stoga predlažu ograničavanje broja agenata unutar VAS-a
koji komuniciraju s vanjskim agentima. Nadalje, svi agenti unutar VAS-a komunicirali bi
isključivo s reprezentativnim agentima VAS-a, koji bi potom prosljeđivali poruke odgo-
varajućim vanjskim agentima [33]. Ova ideja slična je konceptu holonskog sustava [25].
Rezultat ovog pristupa je ograničen broj agenata unutar VAS-a koji implementiraju po-
uzdanu logiku za komunikaciju u kontekstu prosljeđivanja poruka. Ostatak analiziranih
radova bave se utjecajem različitih algoritama na pronalazak optimalne rute komunika-
cije između izvornog i odredišnog agenta, u slučajevima kada izravna komunikacija nije
moguća te su potrebni posrednički agenti [24, 33, 3]. Iako se analizirani radovi bave
problematikom razmjene poruka među agentima, njihova su rješenja ograničena na tradi-
cionalni dizajn i implementaciju za konkretne probleme komunikacije, bez nastojanja da
se ponudi univerzalno rješenje za specifikaciju komunikacijskih tokova.

Literatura iz domene praksi iz industrije fokusirana je na platforme orkestracije sus-
tava. Agent se također može promatrati kao takav sustav budući da obavlja unaprijed
definirane zadatke kako bi proizveo rješenje. U načelu, svaki agent pruža barem jedan
servis, no svaki zaseban servis ne može se nužno smatrati agentom ako nije dovoljno
autonoman u obavljanju zadatka [26]. Problem komunikacijskih tokova unutar sustavno
orijentiranih arhitektura (posebice u kontekstu mikroservisa u suvremenim okuženjima)
naziva se orkestracija [127]. Na tržištu postoji nekolicina platformi za orkestraciju sus-
tava, no one obično omogućuju orkestraciju na visokoj razini apstrakcije, pri čemu ne
uzimaju u obzir specifičnu prirodu samog sustava. Primarni fokus spomenutih platformi
odnosi se na pokretanje servisa u pravilnom redoslijedu unutar istog klastera sustava,
čime se omogućuje lakša suradnja među servisima te ravnomjernija raspodjela zahtjeva
po pojedinom sustavu [90, 91]. Kubernetes [18] je platforma otvorena kôda koja omogu-
ćuje orkestraciju sustava pomoću deklarativne konfiguracije. Jedna od glavnih značajki
platforme jest mogućnost skaliranja klastera sustava te automatizacije procesa uključenja
u rad. Kubernetes ima vlastiti ekosustav za potporu zajedničkog rada sustava unutar
klastera u kojem su stacionirani. No, Kubernetes ne nudi rješenje za komunikaciju među
sustavima. U Kubernetesovom ekosustavu, sustav je izoliran u zasebno okruženje s pristu-
pom resursima klastera u kojem se nalazi. Međutim, karakteristike specifične za pojedinu
vrstu sustava moraju biti zasebno projektirane i implementirane. To ukazuje na to da
ova platforma ne nudi rješenja prilagođena svakom pojedinom sustavu, već djeluje is-
ključivo na visokoj razini apstrakcije [90]. Docker Swarm [106] je način rada platforme
Docker koja pruža alate za orkestraciju sustava slične Kubernetesu. Razlike između ove
dvije platforme proizlaze iz njihove definicije ekosustava, pri čemu Docker Swarm nudi
ograničeniji skup funkcionalnosti u pogledu konfiguracije infrastrukture i pristupa povezi-
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vanju većeg broja klastera. Docker Swarm također ne nudi rješenje za pojednostavljenje
komunikacije među sustavima [106, 85]. Postoji nekolicina alternativnih platformi orkes-
tracije sustava kao što su Azure Container Instance [60], Google Cloud Run [36], itd..
Unatoč tome, nijedna od istraženih platformi ne bavi se specifikacijom komunikacijskih
tokova. Njihov je glavni fokus pružanje infrastrukture u kojoj su sustavi smješteni [85].
Prethodno opisana razina apstrakcije koju ove platforme nude opravdana je s obzirom na
to da su mehanizmi komunikacije specifični za svaki pojedini sustav. Stoga je iznimno
složeno razviti univerzalno rješenje za sve vrste komunikacijskih tokova, bez obzira na
vrstu sustava. Većina analiziranih platformi orkestraciju temelji na konfiguracijskim da-
totekama, pri čemu konfiguracija omogućuje alokaciju resursa, definiranje međuzavisnosti
sustava i slične postavke. Iz tog razloga, proširenje konfiguracijskih funkcionalnosti radi
specifikacije komunikacijskih tokova nije izvedivo.

Analizom literature utvrđeno je da postoji značajan prostor za poboljšanje u pogledu
specifikacije komunikacijskih tokova unutar VAS-a. Istraženi znanstveni radovi uglavnom
se bave modeliranjem agenata u okviru ograničenja samog VAS-a. S druge strane, posto-
jeće platforme za orkestraciju sustava primarno su usmjerene na apstrahiranje zajedničkih
karakteristika sustava poput resursa, infrastrukture i sličnih elemenata, neovisno o nji-
hovoj vrsti. Budući da se ovim istraživanjem predlaže razvoj novog artefakta temeljenog
na procesnom računu, valja istaknuti da, osim programskog jezika Pict, nisu pronađeni
drugi široko poznati programski jezici koji se temelje na toj paradigmi [80].

Ciljevi istraživanja

Primarna istraživačka pitanja na koja je usredotočen ovaj rad usmjerena su na konstruk-
ciju programskog jezika za orkestraciju agenata u višeagentnoj arhitekturi koji zadovoljava
potrebe modernih domena te omogućuje inženjeru jednostavnu specifikaciju komunikacij-
skih tokova. Shodno tome, istraživačka pitanja su sljedeća:

IP1 Koje vrste komunikacijskih tokova treba podržati programski jezik s obzirom na po-
trebe modernih domena vezanih uz mikroservisnu arhitekturu, umjetnu inteligenciju
i računarstvo u oblaku?

IP2 Kako oblikovati sintaksu, semantiku i pragmatiku programskog jezika za orkestraciju
heterogenih mikroservisa u višeagentnoj arhitekturi koristeći procesni račun?

IP3 Na koji način podržati oblikovanje ansambla kompleksnih metoda koristeći holonske
sustave?

Istraživački ciljevi fokusirani su na razvoj artefakata koji će omogućiti pojednostavlja-
njenje orkestracije agenata u VAS-u kroz programski jezik te deklarativni stroj. Iz toga
proizlaze slijedeći ciljevi:
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C1 Razviti programski jezik koji će omogućiti orkestraciju heterogenih mikroservisa u
višeagentnoj arhitekturi

C2 Razviti deklarativni stroj temeljen na procesnom računu koji će biti u stanju uprav-
ljati komunikacijskim tokovima među inteligentnim agentima

Nadalje, hipoteza koja se ispituje ovim radom jest:

H1 Programski jezik za specifikaciju komunikacijskih tokova temeljen na procesnom
računu unaprijedit će orkestraciju heterogenih mikroservisa koristeći višeagentnu
arhitekturu

Metodologija

Ovim istraživanjem razvijeni su artefakti koji nude rješenje za prepoznate nedostatke
povezane sa specifikacijom komunikacijskih tokova u VAS-u. Stoga je odgovarajuća istra-
živačka paradigma za ovo istraživanje pragmatizam. Budući da je istraživanjem konstru-
irano novo rješenje koje utječe na način na koji softverski inženjeri definiraju komunikacij-
ske tokove te na njihovo iskustvo implementacije u usporedbi s tradicionalnim pristupima
dizajnu takvih sustava, istraživanje slijedi kvalitativni pristup. Metodologija koja najbolje
odgovara postavljenim ciljevima i očekivanim rezultatima jest znanost o dizajnu [119, 77].
U okviru ovog istraživanja definiran je skup zahtjeva koje je artefakt morao zadovoljiti
tijekom implementacije. Artefakt je isključivo usmjeren na poboljšanje komunikacijskih
tokova među agentima, dok ostale funkcionalnosti agenata nisu bile predmet ovog istra-
živanja. Tijekom evaluacijske faze analizirana je ispunjenost postavljenih zahtjeva te su
identificirane prednosti i nedostaci artefakta na temelju povratnih informacija evaluatora
koji su sudjelovali u njegovom testiranju.

Primarne metode korištene u ovom istraživanjau uključuju formalizaciju komunikacije
agenata unutar VAS-a korištenjem procesnog računa [105, 7], modeliranje programskog
jezika na temelju unaprijed definiranih vrsta komunikacijskih tokova [14] te razvoj pro-
gramskog jezika i deklarativnog stroja primjenom metoda programskog inženjerstva [26].
Sintaksa jezika formalizirana je korištenjem kontekstrualno slobodnih gramatika i aps-
traktnih stabala sintakse. Semantika jezika slijedi operativnu semantiku π-računa [76]
koji je instanca procesnog računa. U svrhu formalizacije komunikacije agenata, prijedlog
je primijeniti procesni račun. Procesni račun predstavlja obitelj pristupa za modeliranje
konkurentnih sustava s fokusom na opisivanje interakcije, komunikacije i sinkronizacije
agenata. Glavne značajke svih pristupa procesnom računu uključuju: prijenos poruka
između neovisnih procesa koji predstavljaju interakcije, ograničen broj elemenata i opera-
tora za opis procesa te specifična algebarska pravila za njihove operatore. Pravilo redukcije
predstavlja ključni aspekt procesnog računa jer omogućuje jednoznačan opis komunika-
cije, uzimajući u obzir paralelnu kompoziciju, sljednost i transformaciju ulaza u izlaz [105,
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7]. Procesni račun daje formalnu pozadinu za modeliranje složenih distribuiranih sustava
i koristi se kao teoretska osnova za istraživanje.

Cilj metode modeliranja jest oblikovati karakteristike i elemente novog programskog
jezika na temelju koncepata razvoja komunikacijskih tokova u VAS-u [14] te koncepata
holonskih sustava u prethodno definiranim granicama [105, 7]. Ključni koncepti korišteni
tijekom implementacije usmjereni su na specifikaciju komunikacijskih tokova u skladu s
unaprijed definiranim zahtjevima. Holoni predstavljaju prikladan koncept za modeliranje
kompleksnih distribuiranih sustava jer omogućuju organizaciju sustava u manje jedinice
(holone) kroz hijerarhijsku strukturu [25]. U skladu s prethodno konstruiranim modelom
jezika, programski jezik i deklarativni stroj razvijeni su primjenom metoda programskog
inženjerstva [26]. Programski jezik koristi se za konstrukciju specifikacije komunikacijskih
tokova, odnosno orkestracije agenata, dok je uloga deklarativnog stroja procesuiranje te
specifikacije.

U prvoj fazi odabrane metodologije provedena je analiza literature o temama veza-
nim uz VAS, mikroservisnu arhitekturu, umjetnu inteligenciju, orkestraciju i računarstvo
u oblaku, s posebnim fokusom na aspekt specifikacije komunikacijskih tokova. Kvalita-
tivnom analizom karakteristika postojećih pristupa orkestraciji identificiran je prostor za
unaprjeđenje. Osim znanstvene literature, detaljno su istražene i postojeće platforme za
orkestraciju sustava, s ciljem utvrđivanja njihovih primarnih funkcionalnosti i industrij-
skih praksi. Nakon dovršetka analize i identifikacije problema, pristupilo se sljedećoj fazi
istraživanja koja se bavi prikupljanjem zahtjeva za dizajn artefakta i izradom plana rada
s jasno definiranim ciljevima. U skladu s time, zahtjevi za dizajn artefakta definirani su
na temelju analizirane znanstvene literature, industrijskih standarda te ciljeva projekta
O HAI 4 Games (Orkestracija hibridnih metoda umjetne inteligencije s primjenom na
računalne igre) [100]. U ovoj fazi jasno su definirane vrste komunikacijskih tokova koje
programski jezik podržava, uzimajući u obzir ograničenja razvoja agenata u VAS-u te
potrebe holonskih sustava. Opis pristupa primjene procesnog računa u specifikaciji ko-
munikacijskih tokova dan je po završetku ove faze te je korišten u sljedećoj fazi, pri dizajnu
i razvoju artefakta, odnosno implementaciji programskog jezika. U fazi dizajna i razvoja
artefakta, cilj je razviti programski jezik u skladu s unaprijed definiranim zahtjevima,
temeljem prethodno izrađenog plana rada. Proces je podržan ranije opisanim metodama
formalizacije, modeliranja i programskog inženjerstva. Ova faza obuhvaća dizajn sintakse,
semantike i pragmatike jezika, kao i implementaciju deklarativnog stroja koji je sposo-
ban procesuirati specifikaciju komunikacijskih tokova koje pruža korisnik (programer). U
četvrtoj fazi metodologije, novorazvijeni artefakt testiran je i evaluiran na slučajevima
korištenja u stvarnim domenama. Slučajevi korištenja implementirani su kroz projekt O
HAI 4 Games, u kontekstu masivnih online igara (MMORPG), kognitivnih agenata u
gamifikaciji, ozbiljnih igara te holografskih igara [100].

Po prijelazu u fazu evaluacije rješenja, artefakt je evaluiran kroz provjeru može li
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programski jezik adekvatno podržati unaprijed definirane vrste komunikacijskih tokova,
potvrdu ispravnosti semantičke analize te detaljnu procjenu od strane projektnog tima O
HAI 4 Games i nezavisnih stručnjaka iz područja računarstva u oblaku, umjetne inteligen-
cije i mikroservisne arhitekture. Proces evaluacije proveden je u skladu s FEDS okvirom,
koji se sastoji od četiri koraka: (1) definiranje ciljeva evaluacije, (2) odabir strategije eva-
luacije, (3) određivanje evaluacijskih karakteristika, i (4) oblikovanje pojedinačne iteracije
evaluacije [116].

Evaluacija ima za cilj procijeniti sposobnost softverskog artefakta za učinkovito uprav-
ljanje komunikacijskim tokovima u informacijskim sustavima, s fokusom na kompatibil-
nost, modularnost, iskoristivost, performanse i pridržavanje kriterija programskih jezika
poput čitljivosti, jednostavnosti pisanja i pouzdanosti. Strategija evaluacije uključuje
formativne i sumativne metode. Formativna evaluacija provodit će se u kontroliranim
uvjetima, koristeći simulacije i strukturirane povratne informacije s ciljem postupnog
unaprjeđenja artefakta. S druge strane, sumativna evaluacija procjenjivat će integraciju
artefakta u stvarnim uvjetima, kroz praktične slučajeve i prikupljanje povratnih informa-
cija od članova tima i stručnjaka putem promatranja, intervjua i anketa [116].

Karakteristike evaluacije definirane su na temelju standarda ISO/IEC 25002:2024 te
kriterija za procjenu programskih jezika. Evaluacijske epizode obuhvaćaju implementa-
ciju artefakta u stvarnim slučajevima, prikupljanje povratnih informacija, kvalitativnu
analizu prikupljenih podataka i izradu sveobuhvatnog izvješća s preporukama za daljnje
poboljšanje [114, 111, 84].

Struktura disertacije podijeljena je u devet poglavlja, povezanih s fazama metodolo-
gije znanosti o dizajnu [41]. U 1. poglavlju predstavljeni su motivacija za provođenje
istraživanja, opis relevantnih domena i područja, te pregled srodne znanstvene i stručne
literature. Slijedi 2. poglavlje koje opisuje ključne koncepte, definicije, arhitekture i pripa-
dajuće alate, s ciljem boljeg razumijevanja temelja istraživanja. U 3. poglavlju provedena
je analiza postojećih razvojnih okvira i knjižnica za razvoj VAS-a. Poglavlje 4 donosi niz
zahtjeva za razvoj artefakta, čija je implementacija razrađena u 5. poglavlju. Poglavlje 6
prikazuje implementaciju artefakta na slučajevima korištenja u sklopu projekta O HAI 4
Games. Nadalje, poglavlje 7 bavi se evaluacijom provedenom nad artefaktom. Na kraju,
poglavlja 8 i 9 daju uvid u moguća poboljšanja te završne zaključke.
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Introductory notes

1.1 Motivation

With the recent innovations in the field of Artificial Intelligence (AI), especially in the
domain of Generative Artificial Intelligence (Gen AI) and Machine Learning (ML), the
architecture of Multi-agent systems (MASs) is again gaining popularity [15, 124]. That
is due to its suitability for building complex, distributed systems where the autonomy of
agents is essential for efficiently managing and hosting intelligent services and ML mod-
els, which often include integrated business logic [122]. Such systems may demand high
scalability, particularly when serving a large volume of customers, where the performance
output of these services might not be optimal. The application of MAS architecture, by
its very nature, allows for the operation of multiple service instances and their effective
coordination, thereby making the challenge of scalability more manageable [54]. Fur-
thermore, these intelligent agents, which can be regarded as microservices, are typically
designed for a single purpose. They contribute to a broader objective or goal in a limited
capacity. In situations where the main goal needs a combined approach, linking together
several agents that each have different jobs and putting their results together can be a
good way to reach the desired goal [58].

Both of the described scenarios highlight the need for proper management of the
coordination among interconnected agents, commonly referred to as orchestration. How-
ever, the implementation of agent coordination (be it sequential, parallel, conditional, or
in other forms) in a MAS architecture, as evidenced by various research and projects, is
not straightforward [127]. Each agent is an autonomous unit, requiring the establishment
of its own communication mechanisms. This lack of standardized coordination often leads
to inconsistencies in communication, as there is no assurance that the two agents intend-
ing to communicate have the appropriate communication channels in place. This issue
becomes increasingly problematic in MAS that comprise a high number of agents, as the
likelihood of communication failures increases with every new agent introduced into the
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system [122].
A thorough analysis of literature in the domain of scientific papers, as well as industry

standards, indicates that there is significant potential for advancement in the specification
of agent communication flows and the coordination of agents within a MAS [24, 33].
Identifying this challenge led to the idea of developing a programming language that
enables engineers to define agent relationships in the form of communication flows, along
with a platform capable of interpreting and executing these specifications. Such a language
and platform would streamline the process of establishing and managing communication
channels between agents, thus improving the overall efficiency and effectiveness of MASs.

1.2 Introduction

Within the realm of Computer Science (CS), agents are software programs that execute
tasks repeatedly to deliver resources or impact the requesting party, either directly or
indirectly [122, 58]. A defining characteristic of an agent is its autonomy, enabling it to act
as a standalone unit, designed to achieve goals without human direction or intervention.
Agents follow both proactive and reactive behaviors. They perform tasks periodically
according to predefined rules in a proactive manner and respond to events such as incoming
messages in a reactive manner [54].

MASs comprise multiple such agents working together to deliver value beyond what
individual agents can achieve. Due to their autonomy and ability to interact with other
entities, agents can be also observed as heterogeneous microservices [122, 54]. In MAS,
agents communicate to exchange information crucial for achieving their individual object-
ives, but which enables them to achieve higher-level, common goals. The proper orches-
tration of these agents is therefore essential to ensure the delivery of expected outcomes
[58, 127].

The complexity of MAS increases with the number of agents, each adding a layer of
complexity. One of the significant challenges in MAS is the specification of communic-
ation flows. Agents in MAS exchange messages via communication channels to inform
each other about requests or their current status, making it crucial to specify these com-
munication flows accurately for agent cohesion [59, 120].

With traditional approaches, each agent in a MAS is often designed to implement its
own communication flows and business logic independently. However, this practice leads
to redundancy in the codebase, reduced stability, lower readability, and limited extensib-
ility when considering the MAS as a whole. This unit-oriented approach to agent design
and implementation makes orchestrating agents within a MAS particularly challenging
[59].

To address these challenges, a proposed solution involves constructing a program-
ming language, based on process calculus, for specifying communication flows [105]. This
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language, along with a declarative engine, facilitates the efficient processing of agent
orchestration specifications and ensures coordinated execution based on those specifica-
tions. By using this programming language, engineers can define consistent communic-
ation flows between agents, enhancing the orchestration within the MAS. This method
aims to streamline the communication process, reducing redundancy and increasing the
scalability and maintainability of MAS.

In this research context, agent orchestration is viewed as a method for consistently
specifying communication flows between pairs of agents, ensuring each agent is designed
to communicate effectively with others. This approach is crucial for addressing the com-
plexities and challenges inherent in MAS design and implementation.

To support the research, two literature domains have been analyzed with the goal
of better understanding the problem domain, and identifying room for improvement:
scientific papers and practices from the industry. These domains are recognized as the
most relevant, as they cover approaches addressed from a scientific standpoint but also
approaches from real-world use cases The databases that were searched for scientific papers
are Scopus [27], WoS [21], and IEEE Xplore [43], while the papers that were analyzed are
the ones with the highest citation count in the domain of communication flows in MAS.

The literature analysis in this study focuses on two areas: agent communication spe-
cification and agent orchestration. Agent communication specification is primarily ex-
amined through scientific papers, whereas agent orchestration is explored by reviewing
the capabilities of available service orchestration providers, specifically in terms of co-
ordinating agent communication.

Communication specification in MAS is a critical aspect that involves defining proto-
cols for various elements such as message transport, headers, formats, flows, and other
characteristics integral to effective agent interaction [81, 9]. Corkill [24] introduces the
broadcasting concept in MAS, where a message is sent to all parties within a communic-
ation channel. This approach requires each agent to decide which messages are relevant
and respond accordingly, filtering out the rest. Goldman and Ziberstein [33] developed
an approach based on the broadcasting concept, taking into consideration that external
agents (those not part of the observed MAS) may not be equipped to efficiently filter
messages irrelevant to them. They propose restricting the number of agents within the
MAS that communicate with external agents. In this setup, all agents within the MAS
would direct their messages to one or several designated representative agents, who then
relay these messages to the appropriate external agents. This approach to an extent re-
sembles the holonic system concept [112, 89]. As a result of this proposal, one or more
agents in the MAS are tasked with implementing sophisticated communication logic to
accurately forward messages, thus centralizing the responsibility for defining communic-
ation flows on these agents. Further research dives into the development of sophisticated
algorithms aimed at optimizing message delivery routes, ensuring the most efficient and
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rapid communication among agents [3, 120, 17].
M. Berna-Koes et al. [13] address the challenge of transporting non-textual messages,

such as video and audio content, within MAS frameworks designed for textual commu-
nication. They propose the innovative use of backchannels to facilitate the exchange of
these media types. An example of this strategy could involve a single middleware agent
in the MAS to which all other agents send their messages. This middleware agent then
acts as a central hub for distributing various media types among the agents. In addition
to message transport, the issue of message formats is critically examined by Luncean and
Becheru [55], who advocate for the adoption of a common ontology and standardized
message format. This approach aims to eliminate the uncertainties and incompatibilities
associated with the use of custom message formats, thereby streamlining communication
within the MAS.

The body of literature analyzed, encompassing studies [24, 33, 3, 17], addresses a
wide range of message exchange concerns in MAS. However, these studies often remain
confined to conventional design and implementation methods, lacking the application of
novel and innovative approaches. As a result, they tend to offer solutions tailored to
specific use cases rather than proposing a universal strategy that could be applied across
various scenarios.

In contrast, the literature from industry practices focuses primarily on service orches-
tration providers. An agent in a MAS is often likened to a service that performs a specific
task to add value. While each agent typically provides at least one service, not all services
are considered agents due to the absence of autonomy [26]. In service-oriented architec-
tures, especially in the context of microservices, the management of communication flows
is referred to as orchestration [91]. The current market offers a limited number of service
orchestration platforms, such as Kubernetes [18] and Docker Swarm [106], which predom-
inantly concentrate on high-level orchestration tasks. These platforms are designed to
manage the startup order of services and their clustering within the same environment,
facilitating easy communication, efficient load balancing, and robust service deployment.
However, they often overlook the intricacies of in-depth communication between indi-
vidual services.

Kubernetes, for example, is an open-source platform that excels in managing services
through declarative configurations, enabling the scaling of service clusters and automat-
ing their deployment. Its ecosystem is meticulously designed to define and monitor how
services coexist, such as determining the clusters they belong to and the servers on which
they are deployed. Despite these capabilities, Kubernetes does not address the detailed
communication needs between services, leaving the responsibility of designing and im-
plementing specific service features to the service developers themselves [90]. Similarly,
Docker Swarm, operating as a mode within the Docker containerization platform, provides
orchestration tools akin to those of Kubernetes but with a more lightweight approach to
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infrastructure. Docker Swarm focuses on the combination of multiple clusters or swarms,
yet, like Kubernetes, it does not manage the communication between the actual services
[106, 85].

A range of other service orchestration providers, including Azure Container Instances
[60], Google Cloud Run [36], and others, offer alternative solutions to Kubernetes and
Docker Swarm. These providers emphasize the infrastructure required for service cohab-
itation, but do not specifically address service communication or collaboration. This focus
on infrastructure over communication is understandable, given the diversity of commu-
nication requirements among different service types. Creating a universal solution for
managing communication flows across all service types poses significant challenges due to
the unique needs of each service [85].

Most service orchestration providers currently rely on configuration files to orchestrate
service resources and dependencies. These configuration capabilities are primarily directed
towards specifying service resources, such as memory and CPU allocation, as well as
defining service dependencies within the orchestration environment. However, extending
these capabilities to enable the specification of communication flows between services
is a complex endeavor that is not yet feasible with the existing tools. The intricacies of
communication in MAS, involving aspects like message prioritization, routing, and format
compatibility, require more advanced and specialized solutions [18, 85].

Existing research and industry practices have significantly addressed agent communic-
ation and orchestration challenges in MAS. However, there remains a need for innovative
solutions to manage the evolving complexities of these systems. Developing new meth-
odologies, programming languages, and orchestration platforms is essential for efficiently
handling the diverse and dynamic communication requirements in MAS, crucial for their
advancement and scalability.

The literature review suggests significant potential for improving the way communic-
ation flows are specified within MASs. While scientific studies frequently explore design
methodologies tailored to the unique parameters and constraints of MASs, they often stop
short of offering practical tools or standardized frameworks for specifying agent interac-
tions. In contrast, current service orchestration providers primarily focus on abstracting
general service-level concerns, such as resource allocation, infrastructure management,
and service dependencies. These approaches, while effective in traditional service archi-
tectures, fall short in addressing the dynamic, decentralized, and autonomous nature of
agent-based systems.

1.3 Research questions

The primary research questions of this study focus on the construction of a programming
language for agent orchestration within MAS architectures, along with an associated
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declarative engine. This language aims to address the needs of contemporary domains and
facilitate engineers’ specification of communication flows. The specific research questions
are as follows:

RQ1 What types of communication flows should be supported by the programming lan-
guage considering the needs of the modern domains related to microservice archi-
tecture, artificial intelligence, and cloud computing?

RQ2 How to shape the syntax, semantics, and pragmatics of a programming language for
the orchestration of heterogenous microservices in multi-agent system architectures
by utilizing process calculus?

RQ3 How to support the design process of complex methods ensemble utilizing holonic
systems?

1.4 Research objectives and hypothesis

The research objectives center on developing an artifact designed to simplify agent or-
chestration in MAS. This is achieved by utilizing a specialized programming language
and a declarative engine. The specific objectives are as follows:

O1 Develop a programming language that enables the orchestration of heterogenous
microservices in the multi-agent systems architecture, artificial intelligence, and
cloud computing

O2 Develop a declarative engine based on process calculus that is capable of controlling
communication flows between intelligent agents

The hypothesis being evaluated in this research is as follows:

H1 Programming language for communication flows specification based on process cal-
culus shall enhance the orchestration of heterogenous microservices using multi-
agent systems

1.5 Research paradigm, methods and requirements

The ultimate goal of the research is to develop an artifact that addresses previously
identified drawbacks in specifying communication flows in MASs architecture. Therefore,
pragmatism is chosen as a suitable research paradigm. Considering the artifact aims to
impact how software engineers define communication flows and to what extent it influences
how they implement the business logic (in the form of code readability, ease of integration,
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etc.), a qualitative research approach is adopted. Design Science [115] is the methodology
aligned with the desired outcomes and is therefore the one applied in this research.

To develop the artifact within this research, a set of requirements was collected that
the artifact needed to satisfy. These requirements focus primarily on enhancing agent
communication, while other intrinsic agent functionalities fall outside its scope. During
the evaluation phase, the extent to which the requirements were met was examined,
and the advantages and limitations of the artifact were assessed based on feedback from
software engineers who evaluated it.

The primary methods used in the research include formalizing communication of agents
in MAS using process calculus [105, 7], modeling the programming language based on
predefined types of communication flows [14], and developing the programming language
and declarative engine through software engineering methods [26].

For the formalization of agents’ communication, process calculus is applied. This
approach models concurrent systems by focusing on interaction, communication, and
synchronization between agents. The key features shared by all approaches within pro-
cess calculus include message-passing between independent processes, a small number of
primitives and operators to describe processes, and specific algebraic rules for process
operators. Reduction rules, an essential aspect of process calculus, enable the explicit
description of communication, covering parallel composition, sequentialization, and trans-
formation of input into output [105, 7]. Process calculus provides a formal foundation for
modeling complex distributed systems in this research.

The modeling method aims to shape characteristics and elements of a new program-
ming language using MAS communication development concepts [26] and holonic systems
concepts [112, 89], within the boundaries defined by the formalization method [105, 7].
The implemented key concepts are oriented toward specifying communication flows, based
on predefined requirements. Holons, as a concept for modeling complex distributed sys-
tems, allow for the organization of such systems into smaller units (holons) hierarchically
[112, 89].

Software engineering methods were used for the development of the programming lan-
guage and the declarative engine, based on the previously constructed model [66]. The
outcome is a new programming language for constructing communication flow specifica-
tions and a declarative engine capable of processing these specifications.

1.6 Methodology

Design Science Research (DSR) is a research paradigm that emphasizes the creation and
evaluation of practical solutions to complex problems through the development of innov-
ative artifacts, and was therefore selected as the methodology for this research. DSR is
particularly dominant in fields such as information systems, engineering, and CS, where
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the development of functional and effective artifacts (for example tools, models, methods,
and processes) is crucial. This paradigm is distinct from purely theoretical research as it
aims to produce actionable knowledge that can be directly applied to real-world situations.
The primary objective of this paradigm is to improve the state of the art and practice in
a domain through the creation of artifacts that address unmet needs or improve existing
solutions [115, 41].

This research paradigm indicates an iterative process, which involves the continuous
refinement of the artifact based on systematic evaluation and feedback. This iterative
approach includes phases: problem identification, objectives of solution, design and de-
velopment, demonstration, evaluation, and communication. Each phase plays a critical
role in ensuring that the artifact not only addresses the problem effectively but also con-
tributes new knowledge to the field. The description of the phases is as follows [115]:

1. Problem identification: Recognizing and defining the specific problem that needs to
be addressed.

2. Objectives of solution: Outlining what the artifact must achieve to address the
problem effectively.

3. Design and development: Creating the artifact.

4. Demonstration: Showing how the artifact works in a practical scenario.

5. Evaluation: Assessing the artifact against criteria to validate its effectiveness and
efficiency.

6. Communication: Sharing the results and knowledge gained with the broader com-
munity.

Evaluation is a critical component of DSR, ensuring that the artifact not only functions
as intended but also contributes to the knowledge base of the discipline. This involves
methods to assess the utility, quality, and efficacy of the artifact. Common evaluation
methods include case studies, experiments, and field tests, which help to demonstrate the
artifact’s effectiveness in real-world settings [41].

By integrating both research methods and creative design principles, the DSR paradigm
helps bridge the gap between theoretical exploration and practical application, particu-
larly in fields like information systems, engineering, and management. Its emphasis on
utility and innovation makes it especially relevant in rapidly evolving technological and
business environments [41].

In the first phase of the chosen methodology, extensive literature analysis has been
conducted in areas of MAS, microservice architecture, AI, orchestration, and cloud com-
puting with a focus on the aspect of communication flows specification. Additionally,
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this phase includes a comprehensive review of existing orchestration platforms, providing
insights into their functionalities and best practices within the industry. The next step,
Definition of objectives for a solution, was about gathering solution requirements and for-
mulating a clear execution plan with specific objectives. Requirements are derived from
the literature review, industry standards, and the project’s research objectives, particu-
larly within the context of the Orchestration of Hybrid Artificial Intelligence Methods for
Computer Games (O HAI 4 Games) project [100]. This stage clarifies the communication
features the programming language should implement, drawing upon concepts in MAS
programming, holonic systems, and process calculus [112, 89, 105, 7]. In this phase, types
of communication flows are defined that are supported by the language confined by limit-
ations of agent development in MAS and requirements of holonic systems. A description
of the application of process calculus for the communication flows specification was laid
out by the completion of this phase, which is then used in the next phase, Design and
development of artifacts.

In line with the execution plan, Design and development of artifacts phase involved
constructing the programming language definitions that align with the identified require-
ments. It incorporates the previously described formalization, modeling, and software
engineering methods. This includes designing the syntax, semantics, and pragmatics of
the language, as well as implementing an interpreter based on a declarative engine capable
of processing communication flows’ specifications from the end-user, namely the program-
mer. Following the development phase, the artifact underwent demonstration by being
applied to real-world MAS use cases. Specifically, use cases from the O HAI 4 Games
project, which deal with various aspects of A Massively Multiplayer Online Role-playing
Games (MMORPGs), cognitive agents in gamification, serious games, and holographic
games [100], are utilized for testing and validation.

The subsequent phase involves the evaluation of the solution. The artifact was as-
sessed using the Framework for Evaluation in Design Science research (FEDS) framework
[116] to determine its effectiveness in equipping a programming language with features
for managing communication flows. This evaluation follows four steps: defining goals,
selecting strategies, determining evaluation properties, and designing evaluation episodes.
Feedback will be collected from the O HAI 4 Games project team, as well as from inde-
pendent experts with experience in cloud systems, AI, and microservices.

The evaluation combines formative evaluations in controlled environments and sum-
mative evaluations in real-world scenarios. Formative evaluations focus on iterative test-
ing to resolve technical issues, while summative evaluations assess integration and effic-
acy through practical use cases [116]. Key properties evaluated include artifact quality,
interoperability, modularity, usability, performance efficiency, and compliance with pro-
gramming language standards. Feedback will be analyzed qualitatively using thematic
analysis, and results will be documented in a report summarizing strengths, challenges,
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and recommendations for improvement. This structured approach ensures a comprehens-
ive evaluation of the artifact’s technical and functional capabilities [84, 111, 114, 62].

Finally, the results and findings, including the problem, the artifact, its utility, and
effectiveness, are communicated to the wider research community. The evaluation out-
comes are presented to the scientific audience through research papers and discussions.
Additionally, any identified areas for improvement are addressed, and the hypothesis is
validated based on the evaluation feedback provided by the evaluators, as noted previ-
ously.

The expected scientific contributions of this research are diverse and substantial.
Firstly, the development of a programming language specifically designed for the specific-
ation of communication flows in MAS stands as a primary contribution. This language
is anticipated to enhance agent orchestration by providing a framework for consistent
communication flows specification across all agents. One of its key features is the ability
to offer a higher degree of extensibility or modularity in communication flows, which is
crucial for adapting to various scenarios within MAS. Additionally, the language will sup-
port hierarchical structures within MAS, facilitating more organized and efficient agent
interactions.

The second major contribution is the creation of a declarative engine. This engine
will be capable of processing communication flow specifications defined using the new
programming language. A key feature of this engine is that it shifts the responsibility for
implementing communication logic away from software engineers, allowing them to focus
on defining high-level specifications rather than low-level implementation details. As a
result, it provides a flexible and user-friendly platform that supports the customization of
communication flows according to specific requirements and scenarios within MAS. This
approach significantly enhances both the efficiency and maintainability of communication
in MAS, making the engine a valuable tool for software engineers working in this domain.

The expected social contribution of this research is practical and community-oriented,
as it involves providing an open-source solution to both the scientific and professional
communities. This contribution is grounded in the idea of making the research outputs,
such as the programming language for MAS communication flows and the declarative
engine, readily available for usage and evaluation.

The research is structured into nine chapters, which map to the phases of the DSR
methodology [41]. Chapter 1 presents the motivation for conducting the research, a
description of the relevant domains and fields, and a review of related scientific and
professional literature. This is followed by chapter 2, which describes key concepts, defin-
itions, architectures, and associated tools, with the aim of better understanding the re-
search foundations. In chapter 3, an analysis of existing development frameworks and
libraries for MAS development is conducted. Chapter 4 outlines a set of requirements
for the development of the artifact, whose implementation is elaborated in chapter 5.
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Chapter 6 demonstrates the implementation of the artifact through use cases within the
O HAI 4 Games project. Furthermore, Chapter 7 addresses the evaluation conducted on
the artifact. Finally, Chapters 8 and 9 provide insights into possible improvements and
final conclusions.
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Chapter 2

Related work

This chapter presents a detailed explanation of the services, tools, definitions, and con-
cepts that support the technology behind the artifact.

2.1 Agentic concepts, definitions, and architectures

The upcoming sections dive into the foundational aspects of agentic systems. They begin
by defining what an agent is and explore the key characteristics that distinguish agents
from other computational entities. Common architectures that support agent design
are then examined, highlighting how these frameworks enable complex behaviors and
interactions. The discussion also covers the relationships and dynamics between multiple
agents, emphasizing their capacity for collaboration, competition, and co-evolution.

2.1.1 Agent

Within the field of Computer Science (CS), an agent is a software entity that performs
tasks autonomously, often in response to changes in its environment or at scheduled
intervals. Agents are designed to operate without continuous direct human oversight,
guided by their built-in logic and predefined conditions. This autonomy is central to the
concept of an agent, distinguishing it from simple scripts or programs that require manual
initiation. An example task that an agent might perform is to periodically collect weather
data from an external source and send an email message to a group of users who have an
interest in it [58].

Key characteristics of agents are autonomy, reactivity, proactivity, and social ability.
Autonomy indicates that an agent has the capability to make decisions and act on them
without human intervention. This decision-making process is typically guided by a set
of rules or an algorithm that helps the agent determine the best course of action based
on its objectives and the information available to it. Agents are reactive, meaning they
can perceive their environment and respond to changes within it in a timely manner.
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For example, an agent might monitor stock prices and execute trades based on specific
market conditions [67]. Additionally, agents can be proactive, taking initiative based on
their goals rather than just reacting to the environment. These capabilities allow agents to
function effectively in dynamic settings, adapting their behavior as needed to achieve their
designated tasks. While not always required, many agents possess the ability to interact
with other agents or systems in a meaningful way to complete tasks. This interaction can
be as simple as sending data to another system or as complex as negotiating task execution
with other agents. This social ability is particularly important in systems where multiple
agents must work together to achieve a common goal. A cluster of such connected agents
is called Multi-agent system (MAS) [122, 58].

An agent can be formally defined by the following components [92, 35]:

• Percepts (P ): Sensory inputs from the environment.

• Actions (A): Possible outputs or behaviors.

• State (S): Internal representation of the agent’s knowledge or beliefs.

• Transition Function (t : S × P → S): Updates the agent’s state based on percepts.

• Action Function (f : S → A): Determines actions based on the current state.

A rational agent’s behavior can be captured by the agent function which maps percept
sequences to actions [35]:

f : P ∗ → A

Behavioral properties are described as follows [92]:

• Reactivity:
∀p ∈ P, ∃a ∈ A such that a responds to p

• Proactivity: Goal-driven action selection via utility functions or planning.

• Autonomy: Decisions independent of external control, formalized as:

∄f ′ ̸= f overriding a

Designing effective agents requires careful consideration of the agent’s operational
environment and tasks. Agents must be equipped with the appropriate sensors to perceive
their environment accurately and actuators to perform actions. Moreover, the decision-
making mechanisms need to be robust enough to handle the complexities of the real-world,
where unexpected events can occur. As agents operate autonomously, there are significant
ethical and security considerations. Ensuring that agents do not perform unauthorized

13



Chapter 2. Related work 2.1. Agentic concepts, definitions, and architectures

actions or expose sensitive information is crucial. Figure 2.1 previews the architecture of
a simple agent [30].

Figure 2.1: Architecture of a simple agent [44]

2.1.2 Intelligent agents

An intelligent agent is deemed intelligent due to its ability to perceive its environment,
process information, and make decisions that guide its actions toward achieving specific
goals. Its intelligence comes from several core attributes: the capacity to learn and
adapt from past experiences through Machine Learning (ML) and Deep Learning (DL)
techniques, enabling improved decision-making. It has the ability to autonomously select
optimal actions using optimization strategies, utility functions, or rule-based logic. It uses
sensing abilities like Computer Vision (CV) and Natural Language Processing (NLP) to
interpret sensory data and understand context. It shows adaptability and flexibility in
dynamic environments through Generative Artificial Intelligence (Gen AI) models that
anticipate scenarios and modify strategies accordingly. Finally, it has the autonomy to
execute tasks independently, self-managing priorities, and choosing actions that best align
with its objective [123]. These characteristics empower intelligent agents to act effectively
in complex, changing environments, providing robust solutions in various fields [67].

Recent advancements in the field of Gen AI have seen a significant increase in the
traction of agents, particularly as they become more integrated and capable within various
sectors [16]. This trend is driven by the continuous evolution of Artificial Intelligence
(AI) technologies that enhance the autonomy and decision-making capabilities of agents,
making them increasingly valuable in complex, real-world applications. Agents in Gen AI
are being developed to exhibit higher levels of intelligence and autonomy, moving closer
to achieving human-like cognitive abilities [71]. These agents are designed to perform a
wide range of tasks that require understanding, learning, and decision-making capabilities
that were traditionally thought to be exclusive to humans [83].

2.1.3 MASs

MASs are composed of multiple interacting agents, each with their own set of capabilities,
objectives, and knowledge. Agents in a MAS can work collaboratively or competitively,
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depending on the system’s overall objective, to solve problems that are beyond the capabil-
ities of individual agents. They communicate the results of their processing by exchanging
messages [122, 58]. An example of a MAS use case might involve a scenario with three
sequentially communicating agents. The first agent gathers weather data (temperature,
humidity, etc.) from an external source and passes it on to the second agent. This second
agent is tasked with forecasting the weather for the next 6-12 hours. After computing the
forecast, it relays the results to the third agent, which then sends the information to the
interested audience.

The architecture of a MAS defines how agents are organized and how they interact
within the system. There are several types of architectures, each with its own advantages
and applications [94, 25]:

• Centralized: In this setup, a central agent has control over the other agents, mak-
ing decisions on their behalf. This architecture simplifies decision-making but can
become a bottleneck and a single point of failure.

• Hierarchical: Agents are organized in a hierarchy, where some agents have authority
over others. This allows for scalable decision-making but can suffer from inefficiency
due to the overhead of communication and control.

• Distributed: All agents operate at the same level of authority and coordinate their
actions among themselves. This architecture promotes scalability and robustness
but requires sophisticated coordination mechanisms.

• Heterarchical: Similar to distributed architectures, but with a more flexible struc-
ture that allows for dynamic reconfiguration of relationships among agents. This is
particularly useful in environments where the tasks and roles of agents frequently
change.

• Holonic system: the concept of holons, which are entities that are both wholes and
parts of other wholes [25].

Below is the formalization of a MAS, describing its structure, execution, and evolution
[121].

• Dynamical State:
D = (σ, γ)

where:

– σ is the environment state

– γ is the set of consumptions (effects reserved for agents)
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• Actors:
A = {a1, a2, . . . , an}

where A is the set of agents.

• Ongoing Activities:
OA = {oa1, oa2, . . . , oam}

where OA is the set of ongoing environment activities (e.g., moving objects, evap-
orating pheromones).

• Influences:
I = Iagents ∪ Iongoing

where:

– Iagents are influences produced by agents

– Iongoing are influences produced by ongoing activities

• Regional Synchronization:
R = {R1, R2, . . . , Rk}

where each Ri is a group of agents that synchronize locally. Different regions act
asynchronously.

• Execution Functions:

Exec : (σ, γ) → Iagents

Exec_OA : (σ) → Iongoing

• Reaction Function:
React : (σ, I) → (σ′, γ′)

where the environment reacts to the combined influences.

• Evolution Cycle:
Evol(D) = React(Exec(D))

expanded as:
D = (σ, γ)

Iagents = Exec(σ, γ)

Iongoing = Exec_OA(σ)

I = Iagents ∪ Iongoing

(σ′, γ′) = React(σ, I)

D′ = (σ′, γ′)
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In addition to the architecture, which largely dictates the relationships between agents,
another critical factor influencing the design and implementation of a MAS is whether
agents are distributed across multiple servers. If agents are spread across different servers,
it introduces risks associated with performance, security, and data consistency. Commu-
nication latency and synchronization issues might arise, requiring robust strategies to
maintain system coherence and reliability [127]. This also affects the choice of develop-
ment tools, as not all frameworks offer seamless support for managing agents distributed
across multiple servers. Selecting the appropriate framework becomes essential to ensure
efficient inter-agent communication, resource sharing, and system resilience, while minim-
izing risks related to data breaches, unauthorized access, and degraded performance [58,
54]. Figure 2.2 outlines the general structure of a MAS.

Figure 2.2: General structure of MAS [51]

An agent within a MAS is subject to specific design and implementation in order
to embody characteristics of independent functioning. Some of these characteristics are
related to the communication flows specification, availability of the needed resources, and
so on. Because agents are autonomous units, it is possible they use different technologies
and approaches for implementing the business logic, including communication flows. As a
consequence, each agent individually may be required to implement communication flows,
which leads to several challenges [127]:

• Each agent individually implements communication flows, leading to code redund-
ancy and increasing the potential for failure

• Inconsistencies in communication flows (for example, agent A is designed to com-
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municate with agent B, but agent B is not designed to communicate with agent
A)

• Weak extensibility (adding a new agent to the MAS requires changes to the existing
agents)

• Lack of a single source of truth to describe communication flows in the MAS

• Potential conflicts in retrieving shared resources (e.g. race conditions)

Several popular frameworks are available for developing and supporting MASs, includ-
ing Microsoft AutoGen [6], LangGraph [50], Smart Python Agent Development Environ-
ment (SPADE) [108], CrewAI [82], among many others.

2.1.4 Holonic systems

Holonic systems in MAS represent a sophisticated organizational structure where indi-
vidual entities, known as holons, can act both autonomously and cooperatively. In this
framework, holons embody both a part and a whole simultaneously, functioning as inde-
pendent agents that contribute to larger organizational units. This dual nature allows
them to possess their goals, resources, and decision-making capabilities while coordinat-
ing with other holons to achieve higher-order objectives. Holonic systems are especially
advantageous in dynamic and complex environments, as they offer flexibility, scalability,
and robustness. These properties make them ideal for applications in manufacturing,
logistics, and robotics, where adaptability and efficient resource management are crucial.
Their hierarchical yet decentralized organization enables them to effectively tackle com-
plex tasks through distributed problem-solving, by delegating functions across different
levels of the hierarchy, leading to more efficient and responsive systems [112, 89].

In the realm of MAS, holonic systems introduce a structured and recursive way of
organizing agents, known as holons, into a cohesive system. A holonic agent is a self-
similar entity composed of holons as substructures, where the compound holon is qualified
as a super-holon, and the holons that compose a super-holon are called subholons or holon
members. This recursive architecture allows for complex systems to be broken down into
manageable, semi-autonomous units (holons) that can efficiently achieve a common goal
through collaboration and self-organization [31].

The following provides a formalisation of holonic systems, detailing their core com-
ponents and relationships through graph-theoretic definitions, based on prior work [96].

An organizational unit (OU) is defined as:

• Any agent a is an organizational unit.
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• More generally, an organizational unit is a labeled graph:

OU = (O, R, C)

where:

– O is a set of organizational units (nodes),

– R is a labeled set of roles (edges/arcs),

– C is a criteria of organizing (e.g., objective, function, role).

An organizational process (OP) is defined as:

• Any atomic activity p performed by an individual agent is an organizational process.

• More generally, an organizational process is a labeled directed graph:

OP = (P, R, C)

where:

– P is a set of processes (nodes),

– R is a set of ordered relations between processes (edges),

– C is a criteria of organizing (e.g., resource dependency, sequential execution).

An organizational strategy (OS) is defined as:

• Any measurable objective s achievable by an atomic activity is a strategy.

• More generally, an organizational strategy is a labeled directed graph:

OS = (S, R, C)

where:

– S is a set of strategies (nodes),

– R is a set of relations between strategies (edges),

– C is a criteria of connection (e.g., influence, responsibility).

An organizational knowledge artifact (OK is defined as:

• Any accessible knowledge artifact k (such as data, rules, protocols) is an organiza-
tional knowledge artifact.
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• More generally, organizational knowledge is a labeled graph:

OK = (K, R, C)

where:

– K is a set of knowledge artifacts (nodes),

– R is a set of relations between artifacts (edges),

– C is a criteria of organizing knowledge (e.g., thematic grouping, shared access-
ibility).

A critical aspect of implementing holonic systems in MAS is the concept of the me-
diator agent. The mediator acts as the interface between the agents within a holon and
those outside it, facilitating communication and coordination. It serves two main func-
tions: representing the holon to external entities and brokering or supervising interactions
among the sub-holons. This dual role of the mediator is essential for maintaining the in-
tegrity and functionality of the holonic system, ensuring that each holon can effectively
contribute to the system’s overall objectives while retaining its autonomy [31]. Figure 2.3
previews a structure of MAS in holonic system settings.

Figure 2.3: General structure of holonic system [1]

2.2 Microservices and orchestration

These sections explore the dynamic and modular world of microservices architectures, a
design approach that structures applications as collections of loosely coupled services. We
will begin by defining microservices and discussing their core principles, including their
independence in deployment and scalability. Further research focuses on the orchestra-
tion of these services, examining how various orchestration tools and platforms manage
interactions and dependencies between services efficiently.
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2.2.1 Microservices

Microservice architecture is an architectural style for designing and developing software
systems where each system is designed to serve a single, specific purpose. This approach
contrasts with monolithic architecture, where a single system might provide multiple ser-
vices and be used for various purposes. In microservice architecture, services are loosely
coupled, meaning they communicate with each other through various communication
channels and APIs. The loose coupling of these services allows for independent deploy-
ment, enabling only the services that have been updated or changed to be deployed. This
is a significant advantage over monolithic architecture, where the entire system often needs
to be redeployed when any single part is updated [113].

Services that adhere to microservice patterns are commonly referred to as microservices.
These microservices are highly autonomous, meaning they are sophisticated enough in
their business logic to deliver outputs independently, without sharing code with other
services. When necessary, microservices communicate with other microservices to deliver
end-to-end functionality that they cannot provide alone. Importantly, microservices are
specialized in their functions and are designed not to duplicate the services offered by
other microservices within their cluster. For example, a microservices cluster might in-
clude an authentication microservice, a microservice that offers a public API for user
interaction, and another microservice that performs specific business logic. In a mono-
lithic architecture, all these services might exist within the same system, but this can
make deployment more challenging [10].

The autonomy and specialization of microservices, as well as their ability to perform
tasks independently, allow them to be interchangeably referred to as agents. Each mi-
croservice or agent is focused on providing a distinct type of service, contributing to the
overall functionality of the software system in a modular and flexible manner [10, 26].

2.2.2 Containerization and software systems orchestration pro-
viders

Contemporary software systems are increasingly complex, a complexity that can be ana-
lyzed from various aspects, including infrastructure setup, technology, resource require-
ments, and the need for scalability, among others. From the infrastructure perspective,
this complexity often relates to the need for adequate infrastructural support. Such sup-
port is essential for interconnected systems to communicate effectively, share the same
network and resources, and perform similar functions. On the technological front, the
constant emergence of new, more efficient, and advanced technologies presents challenges
in adapting software systems for successful development and deployment. Additionally,
resource allocation is a critical aspect, involving the setup of necessary resources like
memory storage, CPU, GPU, and process allocations, to ensure the system functions as

21



Chapter 2. Related work 2.2. Microservices and orchestration

expected [20, 26].
Another key aspect of complexity is the need for scalability, which involves dynam-

ically allocating resources based on traffic volume in specific situations. This is crucial
for delivering high-throughput applications. These complexities are just a few of the as-
pects needed for software systems to be stable and perform optimally within production
environments. However, addressing these challenges to ensure the functioning of systems
would be difficult without proper technological support. This is where the roles of system
containerization and software systems orchestration providers become crucial. They of-
fer solutions to manage these complexities, enabling more efficient and resilient software
systems [127].

Containerization of a software system involves packaging the software into an isolated
environment equipped with all necessary resources. This process allows the software to
function both as a standalone unit and in cohesion with other systems. One of the key
benefits of containerization is its ability to ensure that containerized software performs
consistently, regardless of the environment it is deployed in, such as different operating
systems. This consistency ensures that systems developed and tested in a local environ-
ment will function similarly in a production environment, making them more predictable
and controllable [26].

Additionally, containerization supports several critical aspects of modern software de-
velopment, including portability, scalability, fault tolerance, and agility. Portability allows
for easy movement of software across different environments, while scalability ensures that
resources can be dynamically adjusted to meet varying demands. Fault tolerance enhances
system reliability by isolating issues within individual containers, preventing widespread
system failures. Lastly, agility is achieved through the ease of updating and deploying
containers, which supports rapid development cycles and quick responses to changing
requirements [20].

Containerization addresses the challenge of preparing systems for deployment but does
not encompass the actual deployment process. This is where software systems orchestra-
tion providers play a crucial role. In simple terms, these providers are designed to deploy
containerized systems into a production environment. Essentially, they take the contain-
erized systems and place them in an environment according to a defined deployment spe-
cification. This specification includes details such as which containerized systems should
be deployed, the number of instances to deploy, scalability rules, and whether systems
within the same deployment should be visible and accessible to each other, among other
factors [91].

This coordination of systems can be described as systems orchestration, as it involves
careful coordination, or orchestration, of the systems to ensure they work cohesively
within their cluster. Orchestration is critical for the smooth operation and scalability of
the system as a whole. Some well-known service orchestration providers include Docker
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Swarm [56], Kubernetes [18], Azure Container Instance [60], and Google Cloud Run [36],
among others. Each of these platforms offers unique features and capabilities to manage
and deploy containerized systems effectively [18, 106, 91].

2.3 Context free grammars

In CS, grammars play a critical role in the design and analysis of both programming
languages and compilers. A grammar in this context is a formal set of rules that defines the
syntactic structure of a programming language. This set of rules helps determine whether
a sequence of characters conforms to the language syntax and is thus interpretable by the
compiler. Grammars are fundamental for the compiler’s ability to interpret and process
high-level programming instructions into a form that can be executed by a computer [103,
107].

The compilation process initiates with lexical analysis, where source code is broken
down into fundamental elements or tokens such as keywords, operators, identifiers, and
literals, simplifying raw input for further compilation phases. This is followed by syntax
analysis, which checks syntactic correctness against grammatical rules, often defined by a
Context-free grammar (CFG), and builds a parse tree to structurally represent the inputs
in alignment with the language’s grammar. After verifying syntax, the compiler proceeds
to semantic analysis, ensuring that the parse tree adheres to language semantics, including
type correctness and scoping rules, crucial for identifying errors that, though syntactic-
ally correct, may be semantically inappropriate or illegal. Subsequently, intermediate
code generation converts the source into an intermediate language, which is a lower-level
standardized code that is easier to optimize and translate into the target machine lan-
guage. The optimization phase then enhances the performance of this intermediate code,
potentially reducing code lines, optimizing variable handling, and improving resource al-
location. The final phase, code generation, translates the optimized code into the target
platform’s machine language, culminating in executable code. This comprehensive pro-
cess highlights the essential role of grammars in transforming high-level programming
languages into precise, executable machine instructions, bridging human-readable code
and machine operations [107, 61].

CFGs are a class of grammars that are especially crucial in both linguistics and CS
for defining the syntax of languages in a way that is independent of context. A CFG
consists of a set of production rules that describe how terminal symbols (basic units of
the language) and nonterminal symbols (combinators of terminals and other nontermin-
als) can be combined to generate strings. This formalism allows CFGs to describe the
syntax of a wide array of programming languages and many natural languages with a
straightforward yet powerful set of rules. In CS, CFGs are widely employed in the design
of compilers and interpreters, where they are used to generate parsers that help convert
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high-level code into a structured format (like parse trees) understandable by machines.
The ability of CFGs to encapsulate the necessary syntactical rules without reference to
semantic content makes them highly effective for analyzing the correctness of syntax and
structuring complex programming and linguistic constructs [86, 38].

A CFG is defined as a 4-tuple [86]:

G = (V, Σ, P, S)

where:

• V (Nonterminal symbols):
A finite set of nonterminal symbols, which serve as placeholders for patterns in
the language. These symbols are used to define the structure of strings and are
eventually replaced by terminal symbols during derivations.

• Σ (Terminal symbols):
A finite set of terminal symbols, disjoint from V , which constitute the actual char-
acters or tokens of the language. These are the basic symbols that appear in the
strings of the language generated by the grammar.

Σ ∩ V = ∅

• P (Production rules):
A finite set of rules of the form:

A → α

where:

– A ∈ V (a single nonterminal symbol),

– α ∈ (V ∪ Σ)∗ (a sequence of terminal and/or nonterminal symbols, including
the empty string ε).

• S (Start symbol):
A distinguished symbol S ∈ V from which derivations begin. The grammar gener-
ates strings by applying production rules starting from S.

2.4 Process calculus

Process calculus which also goes by process algebra is a collection of approaches in CS used
to model concurrent systems. These systems are characterized by the execution of multiple
processes in parallel, which may interact or communicate with each other. Process calculus
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provides a formal framework for describing these interactions and analyzing the properties
of concurrent systems [12, 7].

The fundamental elements of process calculus include message-passing mechanisms
that enable communication between independent processes, a concise set of primitives, and
operators designed to describe and compose processes. A key aspect of process calculus
is its algebraic and reduction rules, which facilitate clear descriptions of interactions like
parallel composition, sequentialization, and transforming inputs into outputs. These rules
provide a formal framework for defining and analyzing process behaviors. By offering a
structured approach to model complex distributed systems, process calculus serves as an
essential theoretical foundation, making it indispensable for the research at hand [105,
79].

Several types of process calculus have been developed, each with unique features and
specific areas of application [12]:

• Calculus of Communicating Systems (CCS): This type is focused on the communic-
ation between processes through labeled actions and their corresponding co-actions,
making it effective for modeling systems where interaction patterns are a key con-
cern.

• Communicating Sequential Processes (CSP): CSP models processes that interact
via synchronized events, providing a robust framework for describing systems where
coordination and synchronization are critical.

• π-Calculus: This calculus extends the capabilities of CCS by allowing the commu-
nication structure itself to change dynamically. It is particularly useful for modeling
mobile systems where the configuration of the system can evolve over time, reflecting
changes in connectivity and communication channels [76].

• Ambient Calculus: This calculus emphasizes the movement of processes in and out
of bounded contexts, known as ambients. It is particularly suited for modeling
mobile computing scenarios where computational entities need to move between
different environments, encapsulating mobility and dynamic context changes.

• Join-Calculus: This variant simplifies and unifies aspects of the π-Calculus, espe-
cially in handling communication channels. It streamlines the implementation in
programming languages, making it more practical for developing distributed applic-
ations.

Process calculus is widely used in the design and analysis of computer systems where
concurrent operations are prevalent. This includes distributed systems, network proto-
cols, and multi-core processors, where ensuring the correct sequencing and interaction
of concurrent processes is critical. Process calculus helps in verifying properties such as
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deadlock-freedom (a system state where no progress is possible) and liveliness (ensuring
that certain actions will eventually occur). Additionally, it has been applied in the devel-
opment of formal verification tools that can automatically check whether a system meets
specified requirements. These tools are invaluable in domains where system failure can
have serious consequences, such as in aerospace, automotive, and critical infrastructure
systems [8, 12].

The formal syntax is outlined below, based on [28, 8, 12]:

• Processes: Processes are denoted as P, Q, R, representing concurrent or sequential
computations.

• Basic syntax:

– 0: Represents the inactive process.

– a.P : Denotes an action a followed by process P .

– P + Q: Represents a choice between processes P and Q.

– P | Q: Denotes the parallel composition of processes P and Q.

– τ.P : Represents a silent action followed by process P .

– [x = y]P : Conditional execution of P if x = y.

– A(x): A process defined by a recursive equation.

• Channels and communication:

– a(x).P : Receive a message x on channel a and continue as P .

– a⟨x⟩.P : Send a message x on channel a and continue as P .

Following are operators in Process Calculus:

• Parallel composition (|): P | Q denotes concurrent execution of P and Q.

• Choice (+): P + Q denotes non-deterministic branching; either P or Q proceeds.

• Sequential composition: a.P denotes action a, followed by process P .

• Restriction (νa): Restricts the scope of a channel a, making it private to a process.

• Replication (!P ): Represents infinite repetition of process P .

The semantics of process calculus is defined using transition systems and structural
operational semantics.

• Communication:
a.P | a⟨v⟩.Q → P [v/x] | Q
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• Choice:
a.P + b.Q

a−→ P

• Parallel composition:
P

α−→ P ′ =⇒ P | Q
α−→ P ′ | Q

• Restriction:
P

α−→ P ′ =⇒ νa.P
α−→ νa.P ′

• Silent actions:
τ.P

τ−→ P

Following are algebraic laws that describe the formalism:

• Commutativity:
P | Q ≡ Q | P

• Associativity:
(P | Q) | R ≡ P | (Q | R)

• Identity:
P | 0 ≡ P

• Distributivity:
P | (Q + R) ≡ (P | Q) + (P | R)

• Expansion:
(a.P | b.Q) ≡ a.(P | b.Q) + b.(a.P | Q)

2.4.1 π-Calculus

π-Calculus is a mathematical model used to describe and analyze the behaviors of con-
current systems. It incorporates dynamic topology changes in network structures. This
flexibility makes π-Calculus particularly effective at modeling complex systems where the
communication structure can evolve during execution [76].

π-Calculus revolves around the concept of naming, where channels for communication
are represented by names. These names can be dynamically created, communicated, and
modified, allowing for the representation of mobile systems where the configuration of
connections between processes can change. This is a significant enhancement over static
models, providing a robust framework for modeling systems such as mobile networks,
distributed systems, and even biological processes [76].

The key elements of this model are as follows [76]:
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• Names and channels: Names serve as channels for communication between processes.
They are essential for sending and receiving messages, allowing processes to interact.

• Prefixes: These represent the basic actions in π-Calculus, including output, input,
and silent actions. Each prefix specifies a type of action and the process that follows
after the action is performed.

• Agents: Agents (or processes) are the core entities in π-Calculus that perform ac-
tions. They are composed using various operators, such as parallel composition,
summation, and restriction, to build more complex behaviors from simpler ones.

Processes can send and receive channel names, effectively altering the network’s struc-
ture as the computation proceeds. This ability to communicate names means that pro-
cesses can dynamically reconfigure the communication flows. For instance, a process can
send a channel name to another process, enabling the recipient to communicate with a
new set of processes through the received channel. This dynamic aspect makes π-Calculus
particularly suitable for representing scenarios in distributed computing, where processes
may need to establish, modify, or terminate connections on-the-fly [76].

π-Calculus has found applications in various fields due to its expressive power in
modeling concurrency and mobility. In CS, it is used to analyze and verify the behavior
of concurrent systems, ensuring properties such as deadlock freedom and liveness. Its
principles are also applied in the design of programming languages and verification tools
for concurrent and distributed systems [76].

Following are the key components of π-Calculus [76]:

• Names (N): A potentially unlimited set of names, N, denoted by {a,b,c,. . . ,z,a1,b1,. . . }
used for channels, variables, and values.

• Identifiers (A): A set of identifiers representing processes or agents, defined by the
expressions.

The expressions and the associated semantics are as follows [76]:

• Prefixes:

– Output (ax):
Sends the name x (data) over the channel a and continues as process P .
Notation: ax.P

– Input (a(x)):
Receives a name (data) over the channel a, stores it in variable x, and continues
as process P .
Notation: a(x).P
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– Silent/Inactive (τ):
Performs an internal action (silent move) and continues as process P , inde-
pendent of external interaction.
Notation: τ.P

• Agents:

– Nil (0):
Represents the inactive process that cannot perform any actions.
Notation: 0

– Prefix (α.P ):
Represents a prefix action α followed by process P .
Notation: α.P

– Sum (P + Q):
Non-deterministic choice between processes P and Q.
Notation: P + Q

– Parallel composition (P | Q):
Processes P and Q run in parallel and can communicate via shared channels.
Notation: P | Q

– Match ((x = y)?P ):
If names x and y are equal, proceed as process P . Otherwise, no action.
Notation: (x = y)?P

– Mismatch ((x ̸= y)?P ):
If names x and y are different, proceed as process P . Otherwise, no action.
Notation: (x ̸= y)?P

– Restriction ((νx)P ):
Restricts the scope of the name x to process P . The name x becomes private.
Notation: (νx)P

– Agent identifier (A(y1, . . . , yn)):
Represents a process call to an agent A with parameters y1 to yn.
Notation: A(y1, . . . , yn)

• Definitions:

– Each agent identifier A(x1, . . . , xn) is defined as a process P with the condition
that if i ̸= j, then xi ̸= xj (i.e., no parameter name repetition).

The above formalization defines the fundamental syntactic constructs of the π-Calculus.
Names (N) are drawn from an infinite set and serve multiple roles, functioning as com-
munication channels, variables for received values, and the transmitted values themselves.
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Identifiers (A) represent agent names, providing a mechanism for defining recursive pro-
cesses. Processes are constructed through a combination of simple operations: action
prefixing, nondeterministic choice, parallel composition, conditional matching and mis-
matching of names, name restriction to control the scope of private names, and invocation
of agent definitions [76].

Prefix actions allow processes to interact with their environment or progress internally,
capturing the fundamental notions of sending and receiving messages or performing silent
moves. The operators for choice and parallel composition provide the basis for modeling
nondeterministic behavior and concurrent execution, respectively. Matching and mis-
matching enable conditional branching based on name equality, while restriction ensures
that names can be localized to particular process scopes, supporting encapsulation. To-
gether, these constructs form the basic language for describing mobile and communicating
processes, setting the stage for specifying operational semantics that govern how processes
evolve through interaction [76].

2.4.1.1 Pict

Pict is a programming language designed around the principles of the π-Calculus. It
leverages the π-Calculus’s ability to handle dynamic communication structures, making it
suitable for modeling and implementing concurrent and distributed systems. The language
relies primarily on a concept of a channel, as the primary way of communication, which
aligns with π-Calculus’s emphasis on the dynamic interaction topologies. This approach
allows Pict to support a wide range of high-level constructs, including data structures,
higher-order functions, and concurrent control structures, all through the paradigm of
message passing [80].

Pict’s core language is a version π-Calculus comprised of explicit types, extended with
practical features such as records and pattern matching. This foundation simplifies the
compilation of Pict programs and allows for various optimizations common to functional
languages. The design goals of Pict include exploring the practical applications of π-
Calculus type systems and ensuring efficient implementation of π-Calculus primitives
such as process creation and communication. This focus on type systems is evident in
Pict’s support for features like polymorphic channels and higher-order subtyping, which
enhance its ability to model complex type interactions within concurrent systems [80].

One of the unique aspects of Pict is its commitment to using the π-Calculus as a prac-
tical foundation for programming language design. This involves translating high-level
language features directly into π-Calculus constructs, thereby maintaining a close align-
ment between the language’s theoretical basis and its practical implementation. Pict’s
development also includes experiments with various type system features, such as ad-
vanced type relationships or so-called subtyping and polymorphism, to extend the ex-
pressive power of the π-Calculus and support advanced programming paradigms within
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a concurrent computing context [80].
Below is an excerpt of code written in Pict:

1 cons ?*[ hd tl r] = (new l (r!l | l?*[n c] = c![hd tl]))
2

3 (new r1 (nil ![r1] |
4 r1?e = (new r2 (cons ![33 e r2] |
5 r2?l = ...))))

Listing 2.1: Pict code excerpt [80]

This Pict code excerpt previews how to create and use a cons cell, which is a basic
part of a list. The first part sets up a cons cell, taking hd (head), tl (tail), and r (result
channel). It creates a new channel l, sends l back through r, and listens on l to send
back the head and tail. The second part creates a list by first making an empty list
using nil, sending the result to r1. It then gets this empty list into e, makes a new
cons cell with 33 as the head and e as the tail, and sends the result to r2. This example
shows how Pict uses channels to build and connect list elements [80].

2.5 AI

AI represents a broad and rapidly evolving field of technology that aims to simulate
human intelligence through machines. It is categorized into several types, each distin-
guished by its methodologies and applications. Traditional ML forms the foundation,
where algorithms learn from and make predictions based on data. These methods are
often simpler, relying on statistical techniques to interpret patterns and insights. DL, a
subset of ML, utilizes neural networks with many layers to process data in complex ways,
enabling it to handle tasks like image and speech recognition more effectively. The newest
frontier, Gen AI, goes further by not just analyzing data but also creating new content
that mimics human outputs, such as text, images, and audio. Each type of AI has unique
strengths, making them suited to different tasks and revolutionizing diverse sectors from
healthcare to entertainment [42, 16].

Together, these AI technologies are not only enhancing existing applications but are
also creating new opportunities for innovation that were previously unimaginable, setting
the stage for future advancements that could further redefine what machines are capable
of achieving.

2.5.1 Gen AI and rise of agentic workflows

Gen AI is a transformative technology that leverages advanced ML models to create new
content, such as text, images, audio, and video, based on the data it has been trained
on. This capability is revolutionizing various business processes by automating complex
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and time-consuming tasks, thereby enhancing efficiency and productivity. Gen AI mod-
els, such as Generative Adversarial Network (GAN) and Large Language Model (LLM)
like GPT-3 [129], are particularly adept at generating high-quality, contextually relev-
ant content, which can be used in applications ranging from customer service to content
creation and beyond. Training these sophisticated models, however, requires significant
computational resources [15].

The process involves extensive data processing and continuous iterations, necessitating
powerful hardware and substantial energy, which can lead to high operational costs and
environmental considerations. As the demand for such technology grows, there is a parallel
push towards developing more energy-efficient AI systems and optimizing the algorithms
to reduce the overall resource footprint. These efforts are critical in ensuring that the
benefits of Gen AI can be harnessed sustainably and ethically, supporting its broader
adoption and innovation across various sectors [16, 15].

2.6 Cloud computing

Cloud computing offers the on-demand delivery of essential computing services such as
servers, storage, databases, networking, software, and analytics through the internet.
This innovative model eliminates the need for direct management of physical hardware,
enabling users to efficiently access and utilize these resources. Key benefits of cloud com-
puting include cost savings, scalability, flexibility, and efficiency. Users benefit financially
by paying only for the services they consume, which also allows them to scale resources
flexibly to match fluctuating demands [4].

The distinct advantages of cloud computing are demonstrated by essential features
such as on-demand self-service, broad network access, resource pooling, rapid elasticity,
and measured service. These features collectively facilitate the automatic provisioning of
resources, ensure service access via any device, enable resource sharing among multiple
users, allow for the agile scaling of resources, and support the monitoring and optimization
of resource usage [34].

Several major companies dominate the cloud computing market, each offering a range
of services tailored to different business needs [53]:

• Amazon Web Services (AWS): AWS is the largest cloud service provider, known for
its extensive range of services and global reach. It is particularly strong in public
cloud offerings and provides robust solutions for computing, storage, and databases.

• Microsoft Azure: Azure is a leading cloud platform that offers a wide array of
services, including developer tools, machine learning, and Internet of Things (IoT)
solutions. It is highly regarded for its integration with Microsoft products and
services, making it a popular choice for enterprises.
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• Google Cloud Platform (GCP): GCP is known for its strong capabilities in data
analytics, ML, and AI. It offers a suite of tools for building, deploying, and scaling
applications, and is favored for its advanced AI and ML services.

Cloud computing emerges as a pivotal resource in training Gen AI models, offering
the necessary computational power and storage solutions that are often too costly or
complex for on-site setups. Services from major cloud platforms such as AWS, Azure, and
GCP are crucial in this area, providing access to advanced GPUs and TPUs, alongside
environments specially tailored for ML tasks. Tools like AWS SageMaker, Google Cloud
Vertex AI Platform, and Azure ML stand out by offering robust frameworks for not only
building and training but also deploying AI models efficiently [118, 53].

By utilizing cloud computing, organizations gain the ability to scale and accelerate
the development and deployment of Gen AI technologies. This scalability is essential
for managing large datasets and complex computations. Furthermore, the flexibility of
cloud services supports continuous experimentation with various model configurations
and adjustments. Enhanced features, including automated hyperparameter tuning, model
versioning, and integrated data pipelines, substantially simplify and optimize the AI de-
velopment life cycle. Thus, cloud computing plays a vital role in meeting the intense
demands of advanced Gen AI applications, providing an integrated infrastructure that
facilitates innovation and efficiency in AI projects [126, 16].

2.7 Technologies

The following sections explore in more detail the technologies that were critical to the de-
velopment of the research artifact, examining their contributions and significance. ANother
Tool for Language Recognition (ANTLR) is a tool used for the development of language
and grammar parsers and was employed in the artifact for programming language spe-
cification [128]. The SPADE framework [70], a MAS framework, served as the foundation
for initiating agent communication. Additionally, sockets and specifically Netcat [46] are
discussed in greater depth, as communication occurs between distributed agents over the
internet.

2.7.1 ANTLR

ANTLR is a technology that provides a tool for developing parsers capable of consum-
ing (or reading), processing, executing, and translating structured text and binary files.
This technology is particularly useful for parsing various specifications, such as Docker
Compose [110] or Helm Chart [128] specifications. The development of a parser with
ANTLR involves multiple aspects and steps: grammar specification, parser generation,
and business logic implementation [75].
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To enable a parser to identify key tokens and phrases, it is necessary to specify a
grammar that follows patterns defined by ANTLR. This grammar is used to define
various tokens and rules that the parser should focus on during parsing. Tokens represent
a single character or a sequence of characters divided by whitespace, while rules can be
seen as specifying the order in which tokens appear, effectively acting as phrases. Defining
rules, in addition to tokens, is crucial for providing context to the parser’s operation, such
as understanding whether a token is used within a creation or an update context. Based
on the defined grammar, ANTLR generates a parser class comprised of start and end
methods for each rule in the grammar. The start method allows an engineer to implement
logic when the parser enters a rule, while the end method enables the implementation of
business logic upon the completion of a rule. If a rule consists of multiple sub-rules, the
parser generates methods for these as well. This results in a tree structure of methods that
are traversed during runtime, each method provided with a context containing additional
information to assist the engineer in understanding the parser’s position when parsing a
specification [65, 74].

ANTLR stands out by integrating the description of lexical and syntactic analysis,
accepting grammars for languages with extended BNF notation, and automatically gen-
erating abstract syntax trees. It generates human-readable recursive-descent parsers in
C or C++ from LL(k) grammars, supporting predicates that allow semantic and syn-
tactic context to direct the parse systematically [75]. These predicates eliminate the
need for manual adjustments to the parser output, even for challenging parsing problems.
ANTLR’s parsers are easy to design and debug, even for non-parsing experts, due to the
clear correspondence between the grammar specification and the output [74].

The methods in ANTLR can be used in various ways, from implementing business
logic executed as the parser iterates through the input data, to translating captured data
into formats more suitable for further processing by different systems. A parser generated
from ANTLR, extended with an engineer’s business logic, can consume any specification
provided to it. Below is an example of a grammar snippet comprised of simple tokens
and rules [65]:

1 grammar Calc;
2

3 // entry point
4 calc: expr+ EOF;
5

6 // expressions
7 expr: expr (’+’|’-’) expr
8 | INT
9 ;

10

11 // rules
12 INT : [0 -9]+;
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13 WS : [ \t\r\n]+ -> skip;

Listing 2.2: ANTLR grammar example

ANTLR will generate the following listener class from the grammar:
1 class CalcListener ( ParseTreeListener ):
2

3 # Enter a parse tree produced by CalcParser #calc.
4 def enterCalc (self , ctx: CalcParser . CalcContext ):
5 pass
6

7 # Exit a parse tree produced by CalcParser #calc.
8 def exitCalc (self , ctx: CalcParser . CalcContext ):
9 pass

10

11

12 # Enter a parse tree produced by CalcParser #expr.
13 def enterExpr (self , ctx: CalcParser . ExprContext ):
14 pass
15

16 # Exit a parse tree produced by CalcParser #expr.
17 def exitExpr (self , ctx: CalcParser . ExprContext ):
18 pass

Listing 2.3: ANTLR listener class

2.7.2 Network sockets

In CS, a socket is a fundamental concept used in network communications, serving as an
endpoint in a two-way communication link between two programs running on a network.
Sockets are managed through a software interface provided by the operating system,
which allows applications to send and receive data bi-directionally in real-time. This
mechanism is crucial for developing network applications where two or more devices need
to communicate over a network, such as the internet or a private local area network [39].

Sockets operate at the transport layer and can be created using different protocols,
primarily Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
TCP sockets, known as stream sockets, provide a reliable, connection-oriented service,
ensuring that data sent is received by the target device in the same order it was sent.
In contrast, UDP sockets, or datagram sockets, offer a connectionless service without
guaranteeing the order or delivery of packets, which can be faster but less reliable [39,
45].

A socket is identified by an IP address combined with a port number, which together
allow the network to direct the incoming and outgoing data to the correct programs. Typ-
ically, a server program will listen on a specific port and accept incoming connections from
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clients, which specify the server’s IP address and port number to establish a connection
[47].

Netcat is a versatile command-line utility that reads and writes data across network
connections using TCP or UDP. The tool is invaluable for network debugging and explor-
ation, providing a wide range of functions from port scanning and listening to transferring
files and creating backdoors [46].

Netcat’s simplicity and power come from its ability to easily create any kind of con-
nection that can be needed in a network. Common uses include [22, 32]:

• Port scanning: Checking for open ports on a target machine.

• File transfer: Sending files across a network using a simple command.

• Chat server: Setting up a minimal chat server where messages can be sent and
received in real-time.

• Connection testing: Verifying that a server is running and accessible over the net-
work.

Netcat operates in two main modes: the connect mode, where it acts as a client
initiating connections to servers, and the listen mode, where it acts as a server waiting for
incoming connections. This flexibility makes it an essential tool for system administrators
and network engineers for testing and troubleshooting network configurations [32, 46].

2.7.3 SPADE

SPADE is a Python framework designed for the development of MASs. It is based on the
Extensible Messaging and Presence Protocol (XMPP), which facilitates communication
between agents [93]. This technology enables developers to set up and implement the
business logic of individual agents, which may be part of the same or different MASs.
Agents in SPADE communicate over XMPP, a messaging protocol known for its features
supporting instant messaging, multi-party communication, and message metadata spe-
cification. XMPP protocols are public, open, free, secure, and standardized. They also
offer decentralization, as anyone can host an XMPP server to facilitate message-passing
throughput [88, 93].

SPADE incorporates asynchronous concepts and is based on asyncio [40]. In SPADE,
an agent is implemented as a class that can encompass various functionalities such as
agent startup logic, agent tear-down logic, and agent business logic. The business logic
is implemented as a behavior, and SPADE offers multiple behavior types including one-
off, periodic, cyclic, and Finite State Machine (FSM). A one-off behavior is designed to
execute only once, and the agent may shut down upon its completion if configured to do
so. Periodic behavior executes a defined number of times at specified intervals, functioning
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like a cron job. Cyclic behavior repeats its business logic in continuous cycles, akin to
a while loop, and is often used for communication, particularly when awaiting incoming
messages. FSM behavior introduces different states and transitions, allowing for varied
logic execution depending on the current state [70, 69].

Agents in SPADE can implement a wide range of complex behaviors, with the flexib-
ility to incorporate various external libraries compatible with the SPADE ecosystem. An
example snippet of an agent implemented using SPADE 3.0 [70] is shown below:

1 class MyAgent (Agent):
2 class CyclicBehavior ( behaviour . CyclicBehaviour ):
3 async def run(self):
4 print ("This is a cyclic behaviour .")
5 await asyncio .sleep (1) # Pause for a second
6

7 class OneShotBehavior ( behaviour . OneShotBehaviour ):
8 async def run(self):
9 print ("This is a one -shot behaviour .")

10

11 class PeriodicBehavior ( behaviour . PeriodicBehaviour ):
12 async def run(self):
13 print ("This is a periodic behaviour .")
14 await asyncio .sleep (2) # Pause for two seconds
15

16 async def setup(self):
17 print ("Agent starting ...")
18 cyclic_behaviour = self. CyclicBehavior ()
19 one_shot_behaviour = self. OneShotBehavior ()
20 periodic_behaviour = self. PeriodicBehavior ( period =3) # Executes

every 3 seconds
21

22 self. add_behaviour ( cyclic_behaviour )
23 self. add_behaviour ( one_shot_behaviour )
24 self. add_behaviour ( periodic_behaviour )

Listing 2.4: SPADE agent comprised with multiple
different behaviors

Additionally, it is important to highlight the role of metadata specification in the
message-passing mechanism. Each message sent from an agent can include custom metadata,
which may be used to specify the message ontology. On the receiving side, an agent can
define filters based on metadata values to selectively receive only relevant messages. Fur-
thermore, metadata can be leveraged not only for filtering messages but also for binding
different behaviors or business logic based on metadata values [69]:

1 class AgentA (Agent):
2 class SendBehavior ( OneShotBehaviour ):
3 async def run(self):
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4 msg = Message (to="agent - b@agent .com") # Target Agent B
5 msg. set_metadata (" performative ", "query -ref")
6 msg. set_metadata (" ontology ", " APiQuery ")
7 msg.body = " Requesting information ."
8

9 await self.send(msg)
10 print ("Agent A has sent a message to Agent B.")
11

12 async def setup(self):
13 print ("Agent A started ")
14 self. add_behaviour (self. SendBehavior ())
15

16 class AgentB (Agent):
17 class ReceiveBehavior ( CyclicBehaviour ):
18 async def run(self):
19 msg = await self. receive ( timeout =10) # Wait for a message

for 10 seconds
20 if msg:
21 print ("Agent B received a matching message .")
22 # Process the message
23

24 async def setup(self):
25 print ("Agent B started ")
26 rb_template = Template (
27 metadata ={" performative ": "query -ref", " ontology ": " APiQuery

"}
28 )
29 self. add_behaviour (self. ReceiveBehavior (), rb_template )

Listing 2.5: Communication between SPADE agents
with specified metadata
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Frameworks and libraries for MAS
architecture

This chapter provides a comprehensive analysis of several widely recognized open-source
frameworks and libraries, with the objective of understanding their respective advantages
and disadvantages. This detailed examination is intended to inform the focus areas for the
development of the artifact. The selection of these frameworks and libraries is based on
their current popularity and relevance within the domain of Multi-agent system (MAS).
Notably, some of these tools are relatively recent additions, emerging in response to ad-
vancements in Generative Artificial Intelligence (Gen AI), which have significantly in-
fluenced the evolution of MAS architectures. Consequently, while it is challenging to
definitively determine their long-term popularity and utility, this chapter evaluates these
frameworks and libraries to assess the following components:

• Support for distributed agents: Evaluates the framework’s ability to manage and
coordinate agents across networked environments.

• Communication flows specification: Assesses the framework’s ability to specify and
manage which agents communicate with each other and how they exchange inform-
ation.

• Integration into existing systems: This component assesses the framework’s ease of
integration with existing agent systems, focusing on compatibility and adaptability
to ensure seamless incorporation with minimal modifications or disruptions.

• Modularity: Evaluates how easily the framework allows modification or replacement
of existing agents, facilitating flexible system updates and enhancements.

• Performance: Assesses the system’s emphasis on readable code, robust error hand-
ling, and efficient coding practices, focusing on minimizing redundancy, reducing
potential failure points, and optimizing resource utilization.
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The following libraries and frameworks are analyzed:

• Smart Python Agent Development Environment (SPADE) [108]

• Microsoft AutoGen [6]

• LangGraph [50]

• Crew AI [82]

• EveJS [23]

• JADE [49]

• Docker [110]

• Kubernetes [18]

3.1 SPADE

SPADE is a robust framework designed for developing distributed agents, leveraging the
Extensible Messaging and Presence Protocol (XMPP) protocol to facilitate seamless com-
munication across networked environments. It requires a specific architectural setup where
agents are defined as classes with distinct behaviors, promoting modularity and clarity in
agent design. While SPADE’s architecture necessitates careful setup and adherence to its
communication protocols, it offers a well-structured approach to MAS development. This
framework supports isolated agent execution, enhancing system resilience by ensuring
that failures in individual agents do not impact others. Despite these challenges, SPADE
provides a comprehensive solution for building scalable and resilient MASs [70, 69, 93].

The following code, written with SPADE, demonstrates two agents communicating
over the network. The agents are shown together in the same file for preview purposes,
but can be separated into different files and deployed on different servers:

1 # agent_a .py hosted on a server in Europe
2 class AgentA (Agent):
3 class SendBehavior ( PeriodicBehaviour ):
4 async def run(self):
5 msg = Message (to="agent - b@agent .com")
6 current_timestamp = datetime .now (). isoformat ()
7 msg.body = f" Currently it is: { current_timestamp }"
8

9 await self.send(msg)
10

11 async def setup(self):
12 self. add_behaviour (self. PeriodicBehavior ( period =60))
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13

14 # agent_b .py hosted on a server in the US
15 class AgentB (Agent):
16 class ReceiveBehavior ( CyclicBehaviour ):
17 async def run(self):
18 msg = await self. receive ( timeout =5)
19 if msg:
20 print (f" Current time is {msg}")
21

22 async def setup(self):
23 self. add_behaviour (self. ReceiveBehavior ())

Listing 3.1: Communication between distributed
SPADE agents

Below are observations on the framework components being analyzed [70, 69, 93]:

• Support for distributed agents: SPADE operates on top of the XMPP network pro-
tocol, which inherently supports the management and communication of distributed
agents. This integration with XMPP facilitates robust and scalable multi-agent in-
teractions across diverse network environments. However, a notable limitation is
that agents developed with SPADE are restricted to using XMPP exclusively, lim-
iting flexibility in adopting alternative communication protocols. This constraint
necessitates careful consideration when integrating SPADE into systems that may
require different or multiple communication standards.

• Communication flows specification: In SPADE, each agent can specify listeners that
define the expected source and format (ontology) of incoming messages, ensuring
precise communication. Agents can also specify target agents for outgoing mes-
sages, ensuring directed communication flows. However, SPADE does not support
broadcasting to multiple agents simultaneously, limiting communication to specified
individual agents only.

• Integration into existing systems: SPADE introduces a structured approach to de-
veloping agents as classes, each implementing one or more behaviors, promoting
modularity and clarity. Communication between agents requires a network connec-
tion and proper setup, adding configuration steps. While SPADE offers a robust
architecture and clear conventions for MAS development, migrating existing code
and business logic to SPADE may be time-consuming. This transition involves
adapting systems to fit SPADE’s communication protocols and behavioral architec-
ture, potentially requiring significant code refactoring and integration efforts.

• Modularity: SPADE’s architecture facilitates smooth replacement of existing busi-
ness logic within an agent, as long as the expected flow of logic—such as whether it
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functions as a listener or a one-off behavior—remains intact. This design allows for
easy updates and modifications to an agent’s internal logic without disrupting over-
all system functionality. Additionally, updating the communication flow between
agents is straightforward, requiring only adjustments to the communication con-
tract, which includes the agent’s address and possibly the ontology description.
This modular approach simplifies maintenance and scalability, allowing developers
to efficiently manage and evolve MASs.

• Performance: As previously mentioned, SPADE requires significant architectural
and code changes, which must be replicated for all agents, leading to potential code
redundancy and increased risk of failure points. However, the isolation of agents,
each running as a separate thread, ensures that failures in one agent do not im-
pact the performance of others. This isolation enhances system resilience, allowing
individual agent failures to be contained without affecting the overall system stabil-
ity. Despite the initial setup overhead, this threading model contributes to robust
performance management within MASs.

3.2 Microsoft AutoGen

Microsoft Autogen provides an advanced multi-agent conversation framework designed for
next-generation Large Language Model (LLM) applications, focusing on collaboration,
teachability, and personalization. This open-source framework enables users to build
sophisticated LLM workflows with modular agents and conversation-based programming,
simplifying development and enhancing code reuse. Autogen’s approach allows multiple
agents to learn and collaborate independently, significantly reducing user effort. Key
benefits include support for diverse LLM configurations, native tool usage through code
generation and execution, and the inclusion of a Human Proxy Agent, which facilitates
seamless integration of human feedback and involvement at various stages [124].

The following code, written in AutoGen, encompasses multiple agents powered by
LLM models:

1 config_list = autogen . config_list_from_json (
2 " OAI_CONFIG_LIST ",
3 filter_dict ={
4 "model": ["gpt -4", "gpt -4 -0314", "gpt4", "gpt -4 -32k", "gpt -4 -32k

-0314", "gpt -4 -32k-v0314"],
5 },
6 )
7

8 llm_config = {" config_list ": config_list , " cache_seed ": 42}
9 user_proxy = autogen . UserProxyAgent (

10 name=" User_proxy ",
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11 system_message ="A human admin.",
12 code_execution_config ={
13 " last_n_messages ": 2,
14 " work_dir ": " groupchat ",
15 " use_docker ": False ,
16 }, # Please set use_docker =True if docker is available to run the

generated code. Using docker is safer than running the generated
code directly .

17 human_input_mode =" TERMINATE ",
18 )
19 coder = autogen . AssistantAgent (
20 name="Coder",
21 llm_config =llm_config ,
22 )
23 pm = autogen . AssistantAgent (
24 name=" Product_manager ",
25 system_message =" Creative in software product ideas.",
26 llm_config =llm_config ,
27 )
28 groupchat = autogen . GroupChat ( agents =[ user_proxy , coder , pm], messages

=[], max_round =12)
29 manager = autogen . GroupChatManager ( groupchat =groupchat , llm_config =

llm_config )
30

31 user_proxy . initiate_chat (
32 manager , message ="Find a latest paper about gpt -4 on arxiv and find

its potential applications in software ."
33 )

Listing 3.2: Multi-agent communication in Microsoft
AutoGen

Below are observations on the framework components being analyzed [124, 6]:

• Support for distributed agents: The AutoGen framework is primarily designed for
use within a single system, meaning it does not support distributing agents across
multiple environments. It features a graph-like approach for defining inter-agent
communication, allowing users to visually map out and manage interactions between
agents. This centralized design ensures cohesive operation and simplifies the man-
agement of agent workflows, but it limits the framework’s ability to scale across
diverse, distributed systems. By utilizing this graph-like structure, developers can
easily specify and adjust communication pathways, enhancing the clarity and effi-
ciency of agent interactions within the system.

• Communication flows specification: This framework enables the specification of
agent pairs involved in communication through a programmatically defined, graph-
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like structure, rather than relying on explicit graph definitions. This dynamic ap-
proach allows agents to determine their communication targets in real-time, provid-
ing flexibility in managing interactions. However, this method can become cumber-
some in environments with a large number of agents, particularly if the logic for
determining communication paths is complex. As the number of agents increases,
managing and optimizing these communication flows can become increasingly chal-
lenging, potentially leading to inefficiencies and difficulties in maintaining clear and
effective interaction protocols. This limitation highlights the need for careful plan-
ning and robust logic design when implementing AutoGen in more extensive multi-
agent systems.

• Integration into existing systems: AutoGen seamlessly integrates with systems that
utilize LLMs, simplifying the migration process by focusing primarily on defining
communication flows. This integration allows for the efficient incorporation of LLMs
into existing systems, streamlining the adaptation of current code to leverage Auto-
Gen’s capabilities. However, the framework is optimized for LLM, which may pose
challenges when integrating other types of Gen AI models or diverse business logic
that adhere to different communication protocols or contracts. This could poten-
tially lead to complicating the integration process and limiting the framework’s
flexibility in accommodating a broader range of Artificial Intelligence (AI) models
and business logic.

• Modularity: This framework offers flexibility by allowing the agents involved in
communication, along with their corresponding business logic (prompts), to be eas-
ily updated or replaced. This adaptability facilitates rapid adjustments to agent
behaviors and communication strategies, enabling developers to quickly respond to
changing requirements or optimize performance. The ease of updating or repla-
cing agents and their logic supports continuous improvement and experimentation,
enhancing the overall robustness and efficiency of the MAS.

• Performance: Introducing Autogen into existing LLM-powered applications requires
minimal changes, primarily involving the restructuring of agent logic and the spe-
cification of communication flows. The framework’s design encapsulates repetitive
logic and error handling, which can lead to a reduction in code size for the mi-
grated applications. This encapsulation not only streamlines the codebase but also
enhances control, monitoring, and failure management, making the system more
robust and easier to maintain. By simplifying these aspects, Autogen facilitates a
smoother transition and improves the overall efficiency and reliability of the MAS,
allowing developers to focus more on enhancing functionalities rather than managing
complex code structures.
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3.3 LangGraph

LangGraph is a powerful extension of the LangChain products family, designed to en-
hance the creation and management of agent runtimes by introducing cyclical graphs.
Unlike traditional directed acyclic graphs, LangGraph supports cyclic behaviors, which
are essential for complex applications involving LLM. LangGraph is particularly effective
for complex tasks that can be broken down into smaller, manageable parts handled by
different agents. This framework utilizes a graph-based structure to define agents and
their interactions, where each agent is represented as a node, and edges define the com-
munication paths between them. Each agent in a graph has their own state but also
has the capability to update the central state object shared between agents [50]. The
following code snippet, written using LangGraph, demonstrates how a graph describing
relationships is specified:

1 def agent_node (state , agent , name):
2 result = agent. invoke (state)
3 # We convert the agent output into a format that is suitable to

append to the global state
4 if isinstance (result , ToolMessage ):
5 pass
6 else:
7 result = AIMessage (** result .dict( exclude ={"type", "name"}), name

=name)
8 return {
9 " messages ": [ result ],

10 # Since we have a strict workflow , we can
11 # track the sender so we know who to pass to next.
12 " sender ": name ,
13 }
14

15 llm = ChatOpenAI (model="gpt -4 -1106 - preview ")
16

17 # Research agent and node
18 research_agent = create_agent (
19 llm ,
20 [ tavily_tool ],
21 system_message ="You should provide accurate data for the

chart_generator to use.",
22 )
23 research_node = functools . partial (agent_node , agent= research_agent , name

=" Researcher ")
24

25 # chart_generator
26 chart_agent = create_agent (
27 llm ,
28 [ python_repl ],
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29 system_message ="Any charts you display will be visible by the user."
,

30 )
31 chart_node = functools . partial (agent_node , agent= chart_agent , name="

chart_generator ")
32

33 workflow . add_node (" Researcher ", research_node )
34 workflow . add_node (" chart_generator ", chart_node )
35 workflow . add_node (" call_tool ", tool_node )
36

37 workflow . add_conditional_edges (
38 " Researcher ",
39 router ,
40 {" continue ": " chart_generator ", " call_tool ": " call_tool ", " __end__ ":

END},
41 )
42 workflow . add_conditional_edges (
43 " chart_generator ",
44 router ,
45 {" continue ": " Researcher ", " call_tool ": " call_tool ", " __end__ ": END

},
46 )
47

48 workflow . add_conditional_edges (
49 " call_tool ",
50 # Each agent node updates the ’sender ’ field
51 # the tool calling node does not , meaning
52 # this edge will route back to the original agent
53 # who invoked the tool
54 lambda x: x[" sender "],
55 {
56 " Researcher ": " Researcher ",
57 " chart_generator ": " chart_generator ",
58 },
59 )
60 workflow . set_entry_point (" Researcher ")
61 graph = workflow . compile ()

Listing 3.3: Specifying agents’ communication in
LangGraph

The following are observations on the analyzed components of LangGraph [50]:

• Support for distributed agents: LangGraph is capable of supporting multiple agents
within a single system environment, where each agent operates independently with
its own memory and business logic. These agents are represented as nodes within
a directed graph, facilitating potential for distributed operations. However, while
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LangGraph inherently supports the orchestration of these nodes within a single
system, it lacks built-in capabilities for inter-system communication, limiting agent
interaction across different environments. This design choice emphasizes system
internal cohesion over external integrations.

• Communication flows specification: The framework utilizes a directed cyclic graph
to define dynamic workflows, enabling the specification of complex agent interactions
and decision-making processes. The graph’s structure is consolidated within a single
section of the codebase, enhancing maintainability and scalability. This centralized
definition allows for real-time adjustments during runtime, adapting the workflow
to evolving conditions and requirements.

• Integration into existing systems: LangGraph is particularly well-suited for integ-
ration with systems that already leverage Gen AI technologies, given its design to
seamlessly connect with such platforms. This makes it an ideal choice for enhan-
cing systems with advanced AI capabilities without significant overhauls. However,
integration with traditional AI or legacy systems might require additional bridging
logic, potentially complicating integrations.

• Modularity: The modularity of LangGraph is a standout feature, facilitating easy
modifications and extensions within the application. Users can replace agents, alter
interaction pathways, and adjust dependencies through a single graph definition file.
This not only simplifies updates and maintenance but also encourages experiment-
ation and rapid development cycles. The architecture’s flexibility supports evolving
business needs and technological advancements without extensive redevelopment.

• Performance: LangGraph optimizes performance by minimizing the boilerplate code
necessary for defining business logic and graph structures. By abstracting less crit-
ical coding aspects and focusing on the graph and its logic, the framework enhances
clarity and efficiency. Additionally, LangGraph supports supplementary features like
monitoring and diagnostics tools, which are crucial for maintaining performance at
scale. These features ensure that LangGraph can handle increasing workloads and
complexity, making it a robust solution for growing applications.

3.4 CrewAI

CrewAI is a multi-agent framework that facilitates the orchestration and management of
groups of autonomous AI agents. Operating within the LangChain ecosystem [50], it util-
izes a role-based design that assigns specific roles, goals, and tools to each agent, allowing
for highly efficient task performance. This framework enables autonomous inter-agent
delegation, where agents can dynamically allocate tasks among themselves to enhance
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problem-solving capabilities and operational efficiency. CrewAI features a modular ar-
chitecture composed of key elements such as Agents, Tasks, Tools, and Crews, which
synergize to form a cohesive and high-performing team. The framework accommodates
both sequential and hierarchical task processes and is continuously being developed to
incorporate more sophisticated coordination strategies [82].

Following is a snippet of CrewAI code that defines previews how agents and tasks are
implemented:

1 search_tool = SerperDevTool ()
2

3 # Define your agents with roles and goals
4 researcher = Agent(
5 role=’Senior Research Analyst ’,
6 goal=’Uncover cutting -edge developments in AI and data science ’,
7 backstory =""" You work at a leading tech think tank.
8 Your expertise lies in identifying emerging trends .
9 You have a knack for dissecting complex data and presenting actionable

insights .""" ,
10 verbose =True ,
11 allow_delegation =False ,
12 tools =[ search_tool ]
13 # You can pass an optional llm attribute specifying what model you

wanna use.
14 # It can be a local model through Ollama / LM Studio or a remote
15 # model like OpenAI , Mistral , Antrophic or others (https :// docs. crewai

.com/how -to/LLM - Connections /)
16 #
17 # import os
18 # os. environ [’ OPENAI_MODEL_NAME ’] = ’gpt -3.5 - turbo ’
19 #
20 # OR
21 #
22 # from langchain_openai import ChatOpenAI
23 # llm= ChatOpenAI ( model_name ="gpt -3.5" , temperature =0.7)
24 )
25 writer = Agent(
26 role=’Tech Content Strategist ’,
27 goal=’Craft compelling content on tech advancements ’,
28 backstory =""" You are a renowned Content Strategist , known for your

insightful and engaging articles .
29 You transform complex concepts into compelling narratives .""" ,
30 verbose =True ,
31 allow_delegation =True
32 )
33

34 # Create tasks for your agents
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35 task1 = Task(
36 description =""" Conduct a comprehensive analysis of the latest

advancements in AI in 2024.
37 Identify key trends , breakthrough technologies , and potential industry

impacts .""" ,
38 expected_output ="Full analysis report in bullet points ",
39 agent= researcher
40 )
41

42 task2 = Task(
43 description =""" Using the insights provided , develop an engaging blog
44 post that highlights the most significant AI advancements .
45 Your post should be informative yet accessible , catering to a tech -

savvy audience .
46 Make it sound cool , avoid complex words so it doesn ’t sound like AI.

""" ,
47 expected_output ="Full blog post of at least 4 paragraphs ",
48 agent= writer
49 )
50

51 # Instantiate your crew with a sequential process
52 crew = Crew(
53 agents =[ researcher , writer ],
54 tasks =[ task1 , task2],
55 verbose =2, # You can set it to 1 or 2 to different logging levels
56 )
57

58 # Get your crew to work!
59 result = crew. kickoff ()

Listing 3.4: Specifying agents and tasks in CrewAI

Below are descriptions of how the analyzed components function within the CrewAI
ecosystem [82]:

• Support for distributed agents: CrewAI operates within a singular process and
does not currently support distributed agents. All agents must reside and operate
within the same system environment, which may limit scalability across distributed
systems.

• Communication flows specification: CrewAI places significant emphasis on defining
agents, roles, and tasks. Each agent, depending on its assigned role, might execute
the same tasks but produce different outputs based on that role. The framework’s
architecture incorporates hierarchical elements reminiscent of holonic systems [31].
However, unlike some other frameworks that define communications at a holistic
level, CrewAI specifies communication at more granular levels, which can affect
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how information flows between agents.

• Integration into existing systems: Framework can be adapted to a wide variety of
applications due to its extensive support for MAS concepts. However, integration
often requires significant modifications or restructuring of existing business logic,
which may not be straightforward and could necessitate considerable development
effort.

• Modularity: CrewAI’s design is highly modular, accommodating not just generic AI
applications but also specific business logic needs. It allows for flexible technology
usage and makes it relatively smooth to replace or extend agents and their tasks.
However, these modifications are not centralized and must be implemented wherever
the agents or tasks are specifically defined within the codebase.

• Performance: Architecture of this framework supports extensive features that allow
for control at multiple levels, potentially increasing the complexity of the system.
This complexity might lead to more extensive coding requirements and a greater
possibility of failures. Notably, CrewAI’s design does not specifically incorporate
multithreading, which means that failures in one agent could be more impactful,
potentially affecting the system’s overall robustness and responsiveness.

3.5 EveJS

EveJS is a sophisticated framework designed for the development and management of dis-
tributed systems using software agents. This framework supports agent-based modeling,
allowing agents to autonomously perform tasks, communicate, and make decisions. It
is inherently cross-platform, functioning seamlessly across environments like Node.js and
web browsers, which ensures flexibility in deployment. EveJS emphasizes communication
flexibility, facilitating agent interaction across various protocols such as Hypertext Trans-
fer Protocol (HTTP), AMQP, and WebSocket (WS). Additionally, its modularity allows
for the extension of agent capabilities with different communication patterns like request-
reply and publish-subscribe. This setup enables agents within EveJS to discover and
communicate with each other, either directly or through mediated connections, making
it an effective tool for creating distributed applications that require robust, decentralized
processes [23, 68].

The following snippet of EveJS code demonstrates how agents and tasks are imple-
mented:

1 var eve = require (’evejs ’);
2 var WebSocketTransport = require (’evejs/dist/eve. custom ’);
3

4 function MyWebSocketAgent (id) {
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5 // Execute super constructor
6 eve.Agent.call(this , id);
7

8 // Extend the agent with WebSocket transport capabilities
9 this. extend (new WebSocketTransport ());

10

11 // Connect to a WebSocket server
12 this. connect (’ws :// localhost :8080/ agents /’ + this.id);
13 }
14

15 // Extend the Agent prototype
16 MyWebSocketAgent . prototype = Object . create (eve.Agent. prototype );
17 MyWebSocketAgent . prototype . constructor = MyWebSocketAgent ;
18

19 // Override the receive method to handle incoming messages
20 MyWebSocketAgent . prototype . receive = function (from , message ) {
21 console .log(from + ’ said: ’ + message );
22 };
23

24 // Create an instance of the agent
25 var agent = new MyWebSocketAgent (’myAgent1 ’);
26

27 // Example of sending a message
28 agent.send(’ws :// localhost :8080/ agents / agent2 ’, ’Hello Agent 2!’);

Listing 3.5: Agents implementation in EveJS

Below are descriptions of the analyzed components of EveJS [23]:

• Support for distributed agents: EveJS facilitates the management of distributed
agents over multiple protocols including AMQP, WS, and HTTP. This framework’s
interoperability ensures that agents can operate independently of the framework
itself, providing versatility in how they are deployed and interact within different
system architectures.

• Communication flows specification: Each agent in EveJS is responsible for con-
figuring its own listeners and communication mechanisms. While the framework
allows for considerable flexibility in defining these flows, it does not natively sup-
port advanced metadata specification within messages. This design choice prioritizes
flexibility and customization over standardized communication formats.

• Integration into existing systems: Implementing EveJS within an existing system
necessitates a thoughtful approach, particularly with the setup of agent interfaces.
Although integration requires careful planning and execution, the business logic
of the existing system can generally be preserved and encapsulated within new or
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existing agents. This modular encapsulation helps maintain system integrity while
integrating new functionalities.

• Modularity: The framework’s modularity and flexibility are pivotal when updating
communication flows or business logic. EveJS’s design supports easy updates to
communication protocols and logic, making it highly adaptable to evolving tech-
nological needs or project requirements. This is particularly valuable in dynamic
environments where system requirements can change rapidly.

• Performance: Each agent in EveJS operates independently, which isolates them from
failures in other parts of the system. This isolation enhances system robustness by
ensuring that issues in one agent do not propagate to others. However, this can
lead to some redundancy in code, particularly in the specification of communication
mechanisms. While this redundancy may increase the resource footprint, it also
allows for tailored configurations that optimize agent interactions based on specific
operational needs.

3.6 JADE

Java Agent DEvelopment Framework (JADE) is a robust Java-based framework designed
to facilitate the development of MASs in compliance with Foundation for Intelligent Phys-
ical Agents (FIPA) standards. FIPA compliance ensures that systems developed with
JADE can communicate and interact with other FIPA-compliant agent systems globally,
fostering interoperability and standardization in agent communications. JADE provides
an extensive set of tools that support the creation, management, and deployment of
agents, featuring capabilities such as asynchronous message-passing using Agent Commu-
nication Language (ACL) for effective agent interaction. Engineered for high scalability
and robustness, the framework is capable of handling thousands of agents across networks
or the Internet, enhancing system reliability and performance under various conditions.
Additionally, JADE supports agent mobility, allowing agents to move across machines to
optimize resource use and balance loads, further contributing to the framework’s flexibil-
ity and adaptability in dynamic environments. With a comprehensive suite of graphical
tools that aid in monitoring and debugging agent behaviors, JADE offers a complete solu-
tion for building distributed applications that require collaborative and intelligent agent
operations [11, 49].

Code snippet below showcases the usage of JADE to achieve communication between
two agents:

1 # ReceiverAgent .java
2 import jade.core.Agent;
3 import jade.core. behaviours . CyclicBehaviour ;
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4 import jade.lang.acl. ACLMessage ;
5

6 public class ReceiverAgent extends Agent {
7 protected void setup () {
8 addBehaviour (new CyclicBehaviour (this) {
9 public void action () {

10 ACLMessage msg = receive ();
11 if (msg != null) {
12 System .out. println (" Received message : " + msg.

getContent ());
13 }
14 block ();
15 }
16 });
17 }
18 }
19

20 # SenderAgent .java
21 import jade.core.Agent;
22 import jade.core. behaviours . OneShotBehaviour ;
23 import jade.lang.acl. ACLMessage ;
24 import jade.core.AID;
25

26 public class SenderAgent extends Agent {
27 protected void setup () {
28 addBehaviour (new OneShotBehaviour (this) {
29 public void action () {
30 ACLMessage msg = new ACLMessage ( ACLMessage . INFORM );
31 msg. addReceiver (new AID(" receiver ", AID. ISLOCALNAME ));
32 msg. setLanguage (" English ");
33 msg. setContent ("Hello , Receiver !");
34 send(msg);
35 }
36 });
37 }
38 }

Listing 3.6: Agents communication in JADE

The following are descriptions of the analyzed characteristics of JADE [11, 49]:

• Support for distributed agents: JADE is great at handling agents that work across
different computers and networks. It allows these agents to work together smoothly
on various platforms, making it easier to build and scale up applications. The
framework can manage thousands of agents at once over the internet, making it
suitable for large and complex systems.

• Communication flows specification: JADE helps agents talk to each other efficiently
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using a system called ACL. This language lets agents send messages back and forth,
making it possible for them to have detailed interactions, share information, and
work together. This is important for agents that need to coordinate and make
decisions together.

• Integration into existing systems: The framework can easily fit into existing systems
because it works well with standard Java setups. This means you can add JADE
to your current projects without major changes. It also follows international stand-
ards for agent systems, which helps JADE-based agents communicate with other
compatible systems, making it easier to connect different systems together.

• Modularity: The architecture of JADE is designed with modularity in mind, allow-
ing developers to easily adapt and extend the framework to meet specific needs. By
breaking down the system into interchangeable components, it offers the flexibility
to enhance or modify parts without affecting the overall system. This approach
keeps the system well-organized and simplifies updates, making it easier to scale
and adapt as project requirements evolve.

• Performance: The framework handles numerous agents simultaneously with minimal
impact on system resources. It ensures smooth operation and high responsiveness,
even in demanding situations. The mobility feature of agents, which allows them
to transfer across machines, optimizes resource usage and balances loads effectively,
boosting overall system performance and reliability.

3.7 Docker

Docker uses containerization technology to encapsulate applications and their depend-
encies into containers, ensuring consistency across various computing environments from
development to production. These containers are lightweight and contain everything ne-
cessary to run the software, including the application code, runtime environment, librar-
ies, and system tools. Docker Compose, a tool for defining and managing multi-container
Docker applications, allows you to use a Yet Another Markup Language (YAML) file to
configure your application’s services, including their dependencies, networks, and volumes.
Additionally, Docker Swarm provides native clustering functionality to manage a cluster
of Docker engines, enhancing fault tolerance and scalability. This setup enables you to
manage complex applications with ease by defining all components in a single configur-
ation file. Compose ensures that services are launched in an orderly fashion based on
their dependencies, maintaining a clear, controlled startup and operational environment.
However, while Compose can dictate service availability and startup order, it does not
manage the internal communication flows between services; this aspect must be handled
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at the application level by developers [110, 56].
1 services :
2 database :
3 image: mysql :8.0
4 container_name : mysql -db
5 environment :
6 MYSQL_ROOT_PASSWORD : example
7 MYSQL_DATABASE : mydb
8 MYSQL_USER : user
9 MYSQL_PASSWORD : password

10 volumes :
11 - db_data :/ var/lib/mysql
12 networks :
13 - app - network
14

15 app:
16 image: python :3.9 - slim
17 container_name : flask -app
18 working_dir : /app
19 volumes :
20 - ./ app :/ app
21 command : python app.py
22 environment :
23 FLASK_ENV : development
24 DATABASE_HOST : database
25 DATABASE_USER : user
26 DATABASE_PASSWORD : password
27 DATABASE_NAME : mydb
28 depends_on :
29 - database
30 networks :
31 - app - network
32

33 volumes :
34 db_data :
35

36 networks :
37 app - network :

Listing 3.7: Docker Compose YAML configuration

The following is an analysis of the characteristics of Docker [110]

• Support for distributed agents: Docker supports distributed agents in the form of
services managed by Docker Compose for single-machine setups and Docker Swarm
for multi-node clusters. Docker Swarm enables clustering across multiple physical
machines or virtual machines, offering high availability, load balancing, and scaling
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capabilities, making it suitable for distributed systems.

• Communication flows specification: Docker operates at an infrastructure level, al-
lowing developers to specify dependencies between services, such as startup order,
through Docker Compose. However, it does not handle or dictate the communic-
ation flows between services; these must be defined and implemented within the
application logic.

• Integration into existing systems: This service orchestration provider can be eas-
ily integrated into existing systems, provided the application code is containerized.
This process involves creating Dockerfile configurations and ensuring dependencies
are encapsulated. Docker’s broad compatibility with various environments simpli-
fies adoption and enables consistent application behavior across different stages of
development and deployment.

• Modularity: Docker’s architecture promotes modularity by allowing services in
Docker Compose to be easily swapped or replaced. This is achieved as long as
the replacement services maintain the same communication contracts, such as API
endpoints, ports, and protocols. Since Docker Compose operates at the infrastruc-
ture level, it enables seamless updates and iterations without disrupting the broader
application ecosystem.

• Performance: Performance optimization is supported in Docker Compose by allow-
ing developers to configure containerized applications with infrastructure-specific
adjustments, such as networking and caching. However, Docker’s resource alloca-
tion features, particularly in Compose and Swarm, are less granular than those of
Kubernetes. Kubernetes provides more flexibility in specifying resource limits for
containers, making it more suitable for complex or resource-intensive environments
[56].

3.8 Kubernetes

Kubernetes, or K8s, is an open-source platform that automates the deployment, scaling,
and management of containerized applications. Built to complement container techno-
logies like Docker, Kubernetes orchestrates the deployment of containers across clusters
of machines, enabling seamless scaling, high availability, and efficient resource utiliza-
tion. It integrates smoothly into existing systems, supporting diverse environments such
as public, private, and hybrid clouds, while allowing developers to define workloads as
pods, deployments, and services. Kubernetes handles distributed services by automat-
ing resource scheduling, load balancing, and self-healing, ensuring system stability and
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resilience. While it simplifies infrastructure orchestration and scales workloads dynam-
ically, Kubernetes does not dictate communication flows between services, leaving that
responsibility to the application logic. Its robust integration with Docker and other con-
tainer runtimes, coupled with its ability to optimize performance and manage complex
workloads, makes Kubernetes a cornerstone for scalable, reliable, and modern application
architectures [19, 48].

1 apiVersion : v1
2 kind: Namespace
3 metadata :
4 name: app - namespace
5

6 ---
7 apiVersion : v1
8 kind: Service
9 metadata :

10 name: mysql - service
11 namespace : app - namespace
12 spec:
13 ports:
14 - port: 3306
15 selector :
16 app: mysql
17

18 ---
19 apiVersion : apps/v1
20 kind: Deployment
21 metadata :
22 name: mysql
23 namespace : app - namespace
24 spec:
25 replicas : 1
26 selector :
27 matchLabels :
28 app: mysql
29 template :
30 metadata :
31 labels :
32 app: mysql
33 spec:
34 containers :
35 - name: mysql
36 image: mysql :8.0
37 env:
38 - name: MYSQL_ROOT_PASSWORD
39 value: " example "
40 - name: MYSQL_DATABASE
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41 value: "mydb"
42 - name: MYSQL_USER
43 value: "user"
44 - name: MYSQL_PASSWORD
45 value: " password "
46 ports:
47 - containerPort : 3306
48

49 ---
50 apiVersion : v1
51 kind: Service
52 metadata :
53 name: flask - service
54 namespace : app - namespace
55 spec:
56 ports:
57 - port: 80
58 targetPort : 5000
59 selector :
60 app: flask
61 type: LoadBalancer
62

63 ---
64 apiVersion : apps/v1
65 kind: Deployment
66 metadata :
67 name: flask
68 namespace : app - namespace
69 spec:
70 replicas : 1
71 selector :
72 matchLabels :
73 app: flask
74 template :
75 metadata :
76 labels :
77 app: flask
78 spec:
79 containers :
80 - name: flask
81 image: python :3.9 - slim
82 env:
83 - name: FLASK_ENV
84 value: " development "
85 - name: DATABASE_HOST
86 value: "mysql - service "
87 - name: DATABASE_USER
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88 value: "user"
89 - name: DATABASE_PASSWORD
90 value: " password "
91 - name: DATABASE_NAME
92 value: "mydb"
93 ports:
94 - containerPort : 5000

Listing 3.8: Kubernetes services configration

Characteristics of Kubernetes are described below [19, 48, 56]:

• Support for distributed agents: Kubernetes provides robust support for distributed
services by orchestrating containerized workloads across multiple nodes in a cluster.
It ensures high availability and fault tolerance through features like automatic load
balancing, self-healing, and resource scheduling. Kubernetes is designed to manage
distributed systems at scale, making it ideal for multi-agent applications spanning
diverse environments.

• Communication flows specification: Service-to-service communication is facilitated
through constructs like Services and Ingress, which manage networking and expose
workloads internally or externally. While access rules and network policies can be
defined, the platform does not manage application-level communication flows. The
responsibility for defining and handling inter-service protocols and data exchange
lies entirely with the application logic.

• Integration into existing systems: Seamless integration into existing systems and
DevOps pipelines is a key strength, with support for container runtimes like Docker
and CRI-O, along with compatibility across public, private, and hybrid cloud plat-
forms. However, migrating to the platform often requires significant re-architecting
of applications to align with concepts such as pods, deployments, and services, which
can involve a steep learning curve.

• Modularity: Kubernetes excels in modularity by abstracting application components
into reusable and independent units such as pods and services. Workloads can be
updated, replaced, or scaled without impacting other parts of the system, provided
they adhere to the defined APIs or communication contracts. This modular design
simplifies maintenance, enabling iterative development and rapid deployment.

• Performance: Granular control over resource allocation allows developers to define
CPU, memory, and storage limits for individual containers. This flexibility en-
sures optimal resource utilization and supports scaling based on workload demand.
Additionally, self-healing and load-balancing features enhance performance and re-
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silience, making the platform well-suited for high-demand, resource-intensive, and
large-scale applications.

3.9 Comparison of the analyzed tools

The comparison of different frameworks and libraries developed specifically for agents, or
those offering a higher level of abstraction that also supports agent-based systems, high-
lights the diverse features each provides. These components have been analyzed across
several critical dimensions: support for distributed agents, communication flow specific-
ation, integration into existing systems, modularity, and performance. The evaluation
reveals that while no single tool comprehensively meets all the assessed criteria, the ana-
lysis offers a valuable overview of the current landscape. It serves as a strong foundation
for understanding industry offerings and best practices.

Tooling focused on the application layer generally performs better in areas such as in-
tegration into existing systems, modularity, and communication flow specification. These
tools are often designed with flexibility and extensibility in mind, enabling smoother in-
tegration into diverse environments and workflows. In contrast, tools operating at the
intersection of the infrastructure and application layers emphasize service orchestration
and advanced distributed system capabilities. While these tools might be less modular or
integrative with existing systems, they bring unique strengths in enabling and managing
distributed agent ecosystems.

The findings are summarized in a comparative analysis that uses symbols to indicate
the degree of compliance with each evaluated component. The plus symbol (+) indicates
that a component is fully met, the forward slash (/) symbol indicates it is partially met,
and the minus symbol (-) signifies that the component is not met. This structured
approach provides clearer visibility into the strengths of each individual tool and their
comparisons against one another.
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Figure 3.1: Evaluation of components across different
tools

Based on the analysis of the components of the selected tools commonly used in the
industry, it can be concluded that none of the available tools fully meet the expectations
and requirements across all five components. This highlights an opportunity for a new
contribution that addresses all five components and serves as an argument for the devel-
opment of a new programming language and its associated declarative engine as part of
this research.
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Solution objectives

The development of the artifact of this research is based on a comprehensive analysis
of three key areas: scientific research, industry practices, and the requirements of the
Orchestration of Hybrid Artificial Intelligence Methods for Computer Games (O HAI 4 Games)
project. Each of these areas has contributed unique insights and perspectives, shaping
the design and functionality of the artifact.

Firstly, the review of scientific research provided a strong foundation for understanding
current advancements and gaps in the field. Most existing studies have primarily focused
on the application and protocol layers, with relatively little attention given to the or-
chestration layer. This identified gap highlights an opportunity for innovation in artifact
development, specifically in addressing challenges related to orchestration and integration
across layers [24, 33, 3, 17].

Secondly, industry practices were examined through the analysis of various tools and
solutions currently used in real-world applications. These tools predominantly focus on
the application and infrastructure layers, offering valuable insights into best practices
and practical implementations [110, 18, 70]. However, it is evident that there is a lack
of support for communications flows specification, especially with regard to distributed
agents.

Lastly, the O HAI 4 Games project has played a critical role in shaping the require-
ments for artifact development. The project provides concrete use cases that were tested
for compatibility with the artifact. These use cases not only served as practical bench-
marks for evaluating the effectiveness of the artifact but also offered guidance on what
features and functionalities are most valuable in real-world scenarios. This alignment
ensures that the artifact is both practical and relevant to the specific needs of the project
[64].

By combining theoretical insights, practical industry knowledge, and real-world bench-
marks, a comprehensive set of requirements was established to guide the design of the
artifact. This holistic approach ensures that the resulting solution is both innovative
and aligned with real-world needs, enhancing usability and addressing specific use case
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demands.

4.1 O HAI 4 Games

O HAI 4 Games is a project that ran from 2020 to its successful completion in 2024. Led
by full professor Dr. Markus Schatten and implemented at the Faculty of Organization
and Informatics, University of Zagreb, the project aimed to address critical gaps in the
orchestration of hybrid Artificial Intelligence (AI) methods for gaming [100].

The central premise of O HAI 4 Games revolved around hybrid AI, an approach that
integrates heterogeneous AI methods, both statistical and symbolic, into cohesive and
functional systems. Although AI methods have been widely applied in domains such as
healthcare, energy, and predictive analytics, their systematic orchestration in gaming has
been largely overlooked. The project addressed this gap by developing methodologies
and platforms for real-time, scalable, and believable AI systems tailored to the unique
challenges of games.

Computer games have long served as effective testing grounds for advancing AI re-
search, from Claude Shannon’s early chess algorithms [104] to the groundbreaking Al-
phaGo [117]. Building on this tradition, O HAI 4 Games focused on orchestration chal-
lenges, particularly the integration of diverse AI methods such as Machine Learning (ML),
automated planning, and swarm intelligence. Its approach emphasized ensuring that AI
behaviors in games remained consistent, coordinated, and immersive.

A significant aspect of the project was the development of four diverse testbeds, each
representing a unique use case:

1. A Massively Multiplayer Online Role-playing Games (MMORPGs): This testbed
focused on automating game testing in a social environment. Using the high-level
interface developed in the ModelMMORPG project [102], AI ensembles were created
to test elements such as Non-player character (NPC) behaviors, quests, and combat
scenarios.

2. Virtual NPC assistant & gamification: The second testbed aimed to enhance the
IMapBook platform [109], a gamified learning environment that combines e-books
with interactive games and social interaction. AI ensembles were used to create
virtual assistants and discussion moderators, incorporating Natural Language Pro-
cessing (NLP) for topic extraction and conversation management.

3. Autonomous Vehicles (AVs) – serious gaming: The third testbed explored serious
gaming in the context of AVs. By developing AI ensembles for ambient intelligence,
the platform simulated complex AV interactions in realistic gaming environments,
utilizing either an existing racing game like TORCS [125] or a newly developed 3D
game environment.
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4. HoloGame platform: The final testbed centered on developing a holographic or
volumetric gaming platform named HoloGame [5]. This innovative use case included
designing a novel game for the platform, integrating AI ensembles for elements such
as NPCs, content generation, and player modeling.

4.2 Requirements

Based on the analysis, the artifact must meet the following requirements to ensure its
efficacy, adaptability, and scalability in practical applications:

• AI support: The artifact should support both traditional and modern hybrid meth-
ods of AI, ensuring flexibility and adaptability to evolving AI practices and meth-
odologies.

• Flexibility and control of communication flow: The artifact should provide a flex-
ible and configurable framework for defining and controlling communication flows
between agents.

• Distributed agents orchestration: The system must support orchestrating distrib-
uted agents across multiple environments, enabling them to execute tasks in a co-
ordinated manner and collaborate effectively within a networked ecosystem.

• Specification and control of agent execution order: It should provide a mechan-
ism to define, enforce, and monitor the execution order of agents to ensure task
prioritization, synchronization, and compliance with operational workflows.

• Support for agent hierarchies: The architecture must allow for hierarchical struc-
turing of agents, enabling an agent to be part of other agents, with the ability to
delegate tasks and responsibilities across different levels of the hierarchy [31].

• Ease of integration into existing systems: The artifact should support effortless
integration with existing software systems and infrastructure, minimizing the need
for extensive modifications or reconfigurations.

• Support for agents using different tech and protocols: The artifact must facilitate
the use of agents developed in different programming languages and support diverse
communication interfaces (e.g., Hypertext Transfer Protocol (HTTP), Transmission
Control Protocol (TCP), etc.), promoting flexibility and inclusivity.

• Ease of component replacement: Components, including agents and communication
interfaces, should be modular and replaceable without significant effort, enabling
users to upgrade or replace parts of the system as technology evolves.

64



Chapter 4. Solution objectives 4.3. Proposal

• Operational scalability: The system should demonstrate the ability to scale reason-
ably well, maintaining acceptable performance and responsiveness as the number of
agents or the complexity of their interactions increases.

• Resilience and fault tolerance: The artifact should include mechanisms for hand-
ling agent failures, ensuring uninterrupted operation and graceful degradation when
issues arise.

• Support for cloud computing: The artifact should be designed to leverage cloud
computing environments, ensuring access to distributed resources, high availability,
and scalability while reducing infrastructure overhead for users.

4.3 Proposal

For clarity, the proposed solution is divided into two components, each considered separ-
ately in relation to the research objectives:

• A programming language for orchestrating heterogeneous microservices in Multi-
agent systems (MASs) architecture

• A declarative engine for controlling communication flows between intelligent agents

4.3.1 Programming language

The proposed programming language is based on the π-Calculus [76]. The rationale for
adopting π-Calculus as the formal foundation of this language is its suitability for mod-
eling systems that emphasize interaction, communication, and synchronization between
dynamic components [76]. It focuses on defining the communication behavior between
agents and other entities in the system. In this proposal, agents do not communicate
with each other directly. Instead, all interactions are mediated through channels and
environments, which serve as intermediaries for sending and receiving messages.

The language enables the definition of communication flows in a simple yet precise
way. It also allows for message transformation between different formats and supports
specifying the protocol to be used for each interaction. The grammar and parser for the
language will be implemented using ANother Tool for Language Recognition (ANTLR)
[75].

The development of the proposed programming language addresses the first research
objective.
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4.3.1.1 Elements

The proposal is that the programming language consists of five core elements around which
its features are built. These elements provide the foundation for expressing orchestration
logic in a structured and modular way. The elements are as follows:

• Agent: Represents a microservice that encapsulates business logic and performs ex-
ecution. Agents communicate indirectly through channels and environments rather
than directly with one another.

• Channel: An artifact-specific component that receives messages from agents and
forwards them to other subscribed agents.

• Holon: A semantically grouped cluster of agents that can interact with each other
through a shared environment [31].

• Environment: A communication interface that enables interaction between holons.
An environment can be defined at the holon’s input, output, or both.

• Execution flow: Defines the order and dependencies for initializing and coordinating
agent execution.

The reserved keywords used to define these elements in the programming language are
agent, channel, and environment. For integrating external holons [31], the proposed
keyword is import, followed by the name of the holon. A conceptual example is shown
below:

1 import <holon name >

Listing 4.1: Conceptual holon import

The design of these core elements, along with the semantics and pragmatic usage pat-
terns described in the following sections, directly addresses the second research question
on shaping the syntax, semantics, and pragmatics of a programming language for the
orchestration of agents.

4.3.1.2 Communication

Communication, specifically the specification of communication flows, is a crucial aspect
of the proposed artifact and directly addresses the first research question regarding the
types of communication flows the programming language should support in the context of
modern domains. Among the defined language constructs, the elements directly involved
in communication are agent, channel, and environment. Each communication flow can
be configured by specifying the direction of communication, the protocol used, and any
transformation required from the input format to the output format.
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The communication flow specification defines how an agent communicates with a chan-
nel, environment, or standard input-output interface, and in what direction. The proposal
is that the left-hand side of a communication flow statement represents the sender, fol-
lowed by the communication protocol, and then the receiving entity on the right-hand
side.

An agent should be implemented to communicate with one or more of the following:

• Channel: By specifying the name of the channel to which the agent sends or from
which it receives messages.

• Environment: By indicating the environment input using the keyword ENV_INPUT,
and the environment output using ENV_OUTPUT.

• Standard input-output interfaces:

– STDIN

– STDOUT

– STDERR

Although channels and environments participate in the message routing process, the
primary point for defining communication flows is at the agent level. To allow agents to
refer to themselves within specifications, the reserved keyword self is introduced.

1 <sending entity > <communication protocol > <receiving entity >

Listing 4.2: Conceptual agent communication flow
specification

Based on the analysis of existing literature on agent communication, and recognizing
that the communication in this context is primarily internal and focused on orchestra-
tion, the proposal is to support two core protocols that can be configured within the
orchestration specification:

• TCP, represented in the language as ->

• User Datagram Protocol (UDP), represented as *->

These symbolic annotations allow protocol selection to be embedded directly within
flow definitions. For instance, the following example demonstrates the use of the UDP
protocol:

1 <sending entity > *-> <receiving entity >

Listing 4.3: Conceptual protocol specification using
UDP
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Channels and environments should be able to transform messages as they pass through
to subscribed agents. That means that an input message reaching either of these entities
can be transformed into a different output before being sent out. The proposal is to
use templates containing variables that describe which information should be preserved
during format transformation. A variable is defined using a question mark (?) followed
by the variable name. To allow clearer transformations between standard formats, each
message format should be encapsulated within a function call.

The supported message transformations are:

• JavaScript Object Notation (JSON)

• Extensible Markup Language (XML)

• Regular Expression (REGEX)

Below is an example of an input message template in JSON format, with a variable
?var:

1 json ({"data": ?var })

Listing 4.4: Conceptual input message template with
variable

Similarly, below is an example of an output message template in XML format, using
the extracted variable ?var:

1 xml(<Abc test="?var" />)

Listing 4.5: Conceptual output message template with
variable

If a channel or environment is not meant to perform any message transformation (i.e.,
it is transparent), the notation should begin with the entity keyword, followed by the
name (for channels), and end with a period, as shown below:

1 <entity > <name >? .

Listing 4.6: Conceptual transparent channel or
environment

In the case of a transformative channel, the definition becomes multiline. The second
line defines the input and output templates, along with the selected protocol. For example:

1 channel <name > :
2 <input template > <communication protocol > <output template >

Listing 4.7: Conceptual transformative channel
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Since a holon may have both input and output environments, the transformation
in this case is defined using separate input and output declarations. Each line starts
with the keyword input or output, followed by the directed protocol, and ends with the
corresponding template. An example is given below:

1 environment :
2 input <directed communication protocol > <input template >
3 output <directed communication protocol > <output template >

Listing 4.8: Conceptual transformative environment

4.3.1.3 Execution flows

The main purpose of execution flows is to define the order in which agents should be
started. These flows can also include conditional logic. This information is used during
orchestration to determine which agents should be started and when.

An execution flow begins with the start keyword, followed by agent names and op-
erators that define sequencing or conditions between them. A conceptual example of an
execution flow with a single agent is shown below:

1 start <agent name > <operator >?

Listing 4.9: Conceptual execution flow specification

The proposal also supports the specification of more complex execution flows involving
multiple agents and conditional dependencies. Below is a list of proposed execution flows
to be supported by the orchestration platform:

• Sequential: Agents are started one after another. As soon as the preceding agent
completes, the next one is started. This is the default behavior and does not require
an operator.

• Parallel: Agents are started simultaneously. This is specified using the operator |.

• On failure: An agent is started only if the preceding agent fails. This is specified
using the operator !.

• On success: An agent is started only if the preceding agent completes successfully.
This is specified using the operator &.

• Restart: The agent should automatically restart as soon as it completes, regardless
of success or failure. This is specified using the operator +.
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4.3.2 Declarative engine

The objective of the declarative engine is to consume agents’ orchestration specifications
written in the proposed programming language and orchestrate the execution of agents
accordingly. This includes managing their communication, tracking their life cycles, and
coordinating their execution in the required order. The declarative engine should also be
capable of recursively loading and starting other holons along with their respective agents
if defined in the specification.

To support this, the proposal includes building a declarative engine and the associated
Python-based orchestration platform. This platform will serve as centralized middleware
that connects agents and provides the necessary infrastructure to integrate both existing
and new agents designed with the platform in mind. Agents should be initialized through
the orchestration platform and should primarily communicate with it. The orchestration
platform will then relay messages to the appropriate agents. Therefore, each agent must
have a corresponding agent definition file (.ad) that describes its communication interface,
allowing the orchestration platform to correctly interact with it.

The orchestration platform will also be responsible for managing environments and
channels, entities specific to the platform and abstracted away from the end user imple-
mentation. Engineers integrating their MASs should not be burdened with managing
these components directly. Given that the platform supports cloud-native operations,
agents can be started as UNIX processes [29], Docker containers [110], or pods within a
Kubernetes cluster [18].

Developing the declarative engine and the orchestration platform aligns with the
second research objective.

4.3.2.1 Agent integration

This artifact should integrate into existing MASs with minimal modification. Since the
orchestration platform handles all communication with agents, it must be aware of how to
interact with each agent, including its public interface, supported protocols, data formats,
and communication modes (e.g., one off messaging, streaming, etc.).

Each agent should have a definition file written in Yet Another Markup Language
(YAML) that includes the following fields:

• Name: A unique name for the agent.

• Description: A description of the agent’s purpose.

• Start command: Instructions for launching the agent.

• Start up mode: Specifies how the agent should be started (e.g., UNIX process,
Docker, or Kubernetes) [29, 110, 18].
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• Communication interface - Defines the communication interface of the agent, in-
cluding:

– The protocol used for communication (e.g., HTTP, WebSocket (WS), Extensible
Messaging and Presence Protocol (XMPP)) [93].

– The expected message format (e.g., JSON, XML, plain text).

– Message type, which specifies whether the agent uses one-off messaging or
streaming.

– Delimiter and end indicator used to segment or terminate streamed messages
when applicable.

In the initial implementation, the proposed orchestration platform will support a pre-
defined set of communication protocols that combine both widely adopted standards and
lightweight, custom-built solutions. The proposed protocols are:

• STDIN: For direct interaction with local UNIX processes [29].

• FILE: For batch-style input/output via the file system.

• HTTP: For standard request-response communication over the web.

• WS: For real-time, bidirectional communication using WS.

• Netcat: For lightweight socket-based messaging using TCP and UDP.

For each agent, the orchestration platform should spawn an agent wrapper, which is
a runtime component that mediates between the agent and the platform. The wrapper
should implement a communication socket that can adapt incoming and outgoing mes-
sages across various protocols and data formats to the unified communication model used
within the orchestration platform.

4.3.2.2 Holons and communication management

The orchestration platform is responsible for managing and exchanging metadata such
as life cycle events with agents, environments, channels, and holons using the XMPP
protocol, incorporating the Smart Python Agent Development Environment (SPADE)
framework [93, 70, 31].

Each holon should maintain an address book containing the XMPP addresses of all
agents, environments, and channels within its cluster. If necessary, it may also include
addresses for external holons. This address book is critical for enabling communication
across distributed components in the system [93, 70]. By organizing holons with their own
communication flows and enabling coordination between holons through known addresses,
this approach helps address the third research question on how to support the design
process of complex method ensembles using holonic systems [31].
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4.3.2.3 Agent life cycle events

Tracking agent life cycle events is essential for enabling more complex execution flows,
such as conditional starts and failure recovery. It also facilitates a more fault-tolerant
system capable of notifying other entities in the ecosystem about agent-specific failures.

The following life cycle events should be tracked:

• Startup: The agent has been launched.

• Readiness: The agent signals it is ready to process tasks.

• Completion: The agent terminates, either successfully or due to failure.

This should be achieved through proactive communication among all entities within
the ecosystem, ensuring that critical state changes such as agent readiness, termination,
or failure are reliably propagated to relevant components.

4.3.2.4 Orchestration

Using the orchestration specification and visibility into each agent’s life cycle, the platform
can coordinate agent execution according to the defined execution flow. It must ensure
proper sequencing, respect agent dependencies, and satisfy communication protocol and
configuration constraints. Orchestration must be performed in a synchronized manner,
ensuring consistency across agent interactions and maintaining correctness in distributed
settings.

4.3.2.5 Cloud support

The orchestration platform shall offer native support for cloud deployments. Since the
platform is responsible for agent startup, it can control the deployment method. The
following execution environments are proposed:

• Docker — Agents can be run in Docker containers and deployed using Docker Swarm
[110].

• Kubernetes — Agents can be deployed as pods managed within a Kubernetes cluster
[18].

• UNIX process - For simple or lightweight deployments [29].

This flexibility enables integration into a variety of deployment scenarios, from research
testbeds to production-grade systems.
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Implementation

Based on the collected requirements and the resulting proposal, an artifact named APi
has been developed [78]. The primary goal of this artifact is to enable enhanced agent
orchestration capabilities through a programming language for specifying communication
flows, along with the corresponding orchestration platform.

In essence, the platform acts as both a coordinator and a facilitator, ensuring smooth
and efficient communication between agents while enforcing structured interactions. At
the core of this orchestration lies the communication flow specification, also referred to
as the agents’ orchestration specification, which is written in the proposed programming
language. This language is designed to offer high flexibility in defining communication
dynamics, covering essential aspects such as message direction, protocol, message type,
and other characteristics required for structured agent collaboration.

Once the communication flow specification is formulated, the declarative engine and
the orchestration platform interpret it and use it as a guide to coordinate and orches-
trate agents. This process ensures that agents follow predefined communication patterns
without requiring direct peer-to-peer interactions. Instead, each agent interfaces with
the orchestration platform, which determines the appropriate routing and message deliv-
ery according to the specified communication flows. This approach simplifies integration
while enforcing modularity and separation of concerns, making the system more scalable
and adaptable to various environments.

A fundamental feature of the artifact is the independence of agents. The platform
is designed to accommodate agents developed in any technology, provided they adhere
to the required communication interface specifications. This allows developers to design
and implement agents using different frameworks, languages, or infrastructures, as long
as they can communicate with the orchestration platform in a standardized way. To in-
tegrate a new agent into the MAS, an agent definition must be defined, outlining the
communication contract that governs its interactions with the platform. This specifica-
tion ensures compatibility, allowing the orchestrator to mediate messages between agents
without requiring direct communication between them.
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By centralizing communication through the orchestration platform, the system gains
a high degree of control, traceability, and flexibility. Since agents do not establish dir-
ect connections, their interactions remain decoupled, reducing dependencies and making
it easier to modify or replace individual agents without disrupting the overall system.
The platform thus provides a robust foundation for designing complex multi-agent envir-
onments, where autonomous components collaborate under well-defined communication
rules.

Figure 5.1 illustrates the orchestration process, showing how the agents’ orchestration
specification is consumed by the orchestration platform, how coordination occurs, and
how messages are routed to the appropriate recipients, i.e., the agents. The socket and
agent definition components are responsible for bridging differences in communication
configurations.

Figure 5.1: Orchestration platform communication with
agents

The following implementation description is divided into two high level components,
namely the programming language and the orchestration platform, which also serves as
the declarative engine.
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5.1 Programming language

The programming language is based on the π-Calculus [76], a formal model designed for
describing and analyzing concurrent systems. Its primary role is to enable engineers to
specify the communication between different types of elements involved in orchestration,
specifically holons, channels, agents, and environments.

Unlike imperative programming languages that focus on sequential execution, π-
Calculus allows for the representation of processes that evolve and interact asynchron-
ously. This makes it particularly well-suited for defining communication protocols, dis-
tributed systems, and multi-agent interactions, where entities operate independently yet
must coordinate effectively.

The primary objective of this language is to provide an intuitive and user-friendly way
to specify how agents communicate. Users define agents’ orchestration specification using
.api files, which serve as structured specifications written in the programming language.
These specification describe how different elements exchange information, ensuring clear
and enforceable communication patterns.

To facilitate parsing and validation, the grammar of the language is defined using
ANTLR, a widely used parser generator. ANTLR enables the compilation of the language,
generating the necessary lexer and parser components to [75]:

• Validate whether a given .api file adheres to the syntactic rules.

• Convert the high-level communication constructs into a structured representation
suitable for execution by the declarative engine.

Since the declarative engine is implemented in Python, the artifacts generated by
ANTLR, including the lexer and parser, are also designed to be compatible with Python.
This ensures integration between the language specification and its execution environment.

This programming language introduces a declarative approach to specifying commu-
nication in MASs, enabling:

• Clear separation of concerns between agents, their communication channels, and the
environments in which they operate.

• A formal yet practical specification language that allows engineers to define inter-
actions without directly handling lower-level concurrency primitives.

• Automatic validation and transformation of communication specifications into ex-
ecutable representations through ANTLR.

75



Chapter 5. Implementation 5.1. Programming language

5.1.1 Semantic analysis

The programming language is formally specified using ANTLR, with its syntax and se-
mantics defined across three distinct grammar files (.g4 extension). These grammar files
are:

1. JSON grammar: Defines constructs related to JSON-based data representation.

2. XML grammar: Governs XML-based structures and their integration within the
language.

3. APi grammar: Serves as the core foundation of the language, defining key syntactic
constructs and operational semantics.

The following JSON grammar is adapted from ANTLR Reference [72] and slightly
modified for specialized use. It handles fundamental JSON constructs such as objects,
arrays, values (including strings, numbers, booleans, and null), and also introduces ad-
ditional tokens such as VARIABLE and SPEC_CHAR for more flexible syntax. Objects are
enclosed by braces and contain key-value pairs separated by commas, arrays are enclosed
by square brackets and contain comma-separated values, and values can include nested
objects or arrays. The grammar also defines a custom VARIABLE token and includes
mechanisms for recognizing Unicode escape sequences, ensuring robust string handling.

1 grammar JSON;
2

3 json
4 : value
5 ;
6

7 obj
8 : ’{’ pair (’,’ pair)* ’}’
9 | ’{’ ’}’

10 ;
11

12 pair
13 : STRING ’:’ value
14 | VARIABLE ’:’ value
15 ;
16

17 arr
18 : ’[’ value (’,’ value)* ’]’
19 | ’[’ ’]’
20 ;
21

22 value
23 : VARIABLE
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24 | STRING
25 | NUMBER
26 | SPEC_CHAR
27 | obj
28 | arr
29 | ’true ’
30 | ’false ’
31 | ’null ’
32 ; // TODO: find out why SPEC_CHAR is here
33

34 SPEC_CHAR : ~(’a’..’z’ | ’A’ .. ’Z’ | ’0’ .. ’9’ | ’:’ | ’.’ | ’-’ | ’>’
| ’<’ | ’/’ | ’ ’ ) ;

35

36 VARIABLE : ’?’ IDENT ;
37

38 IDENT : NameStartChar1 NameChar1 * ; //[a-zA -Z_] [a-zA -Z0 -9]*;
39

40 fragment
41 NameChar1 : NameStartChar1
42 | ’-’ | ’_’ | INT
43 | ’\u00B7 ’
44 | ’\u0300 ’..’\u036F ’
45 | ’\u203F ’..’\u2040 ’
46 ;
47

48 fragment
49 NameStartChar1
50 : [a-zA -Z]
51 | ’\u2070 ’..’\u218F ’
52 | ’\u2C00 ’..’\u2FEF ’
53 | ’\u3001 ’..’\uD7FF ’
54 | ’\uF900 ’..’\uFDCF ’
55 | ’\uFDF0 ’..’\uFFFD ’
56 ;
57

58 STRING
59 : ’"’ (ESC1 | SAFECODEPOINT1 )* ’"’
60 | ’\’’ (ESC2 | SAFECODEPOINT2 )* ’\’’
61 ;
62

63 fragment ESC1
64 : ’\\’ (["\\/ bfnrt] | UNICODE )
65 ;
66

67 fragment ESC2
68 : ’\\’ ([ ’\\/ bfnrt] | UNICODE )
69 ;
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70

71 fragment UNICODE
72 : ’u’ HEX HEX HEX HEX
73 ;
74

75 fragment HEX
76 : [0-9a-fA -F]
77 ;
78

79 fragment SAFECODEPOINT1
80 : ~ ["\\\ u0000 -\ u001F]
81 ;
82

83 fragment SAFECODEPOINT2
84 : ~ [’\\\ u0000 -\ u001F]
85 ;
86

87 NUMBER
88 : ’-’? INT (’.’ [0 -9] +)? EXP?
89 ;
90

91 fragment INT
92 : ’0’ | [1 -9] [0 -9]*
93 ;
94

95 fragment EXP
96 : [Ee] [+\ -]? INT
97 ;
98

99 // \- since - means "range" inside [...]
100

101 SPACE
102 : [ \r]+ -> skip
103 ;

Listing 5.1: JSON grammar

The XML lexer obtained from ANTLR public examples [73] demonstrates how ANTLR
modes are used to handle content outside and inside XML tags, as well as processing in-
structions. It recognizes tags, attributes, comments, CDATA sections, and DTD declarations,
among other XML constructs. The lexer transitions into different modes upon encounter-
ing certain tokens (like < or <?), enabling it to properly tokenize elements and attributes
within XML documents. It also includes rules for entity references, character references,
and names that allow letters, digits, underscores, hyphens, and specific Unicode ranges.

1 lexer grammar XMLLexer ;
2
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3 COMMENTXML : ’<!--’ .*? ’-->’ ;
4 CDATA : ’ <![ CDATA[’ .*? ’]]>’ ;
5

6 DTD : ’<!’ .*? ’>’ -> skip ;
7 EntityRef : ’&’ IDENT ’;’ ;
8 CharRef : ’&#’ DIGIT+ ’;’
9 | ’&#x’ HEXDIGIT + ’;’

10 ;
11 SEA_WS : (’ ’|’\t’|’\r’? ’\n’)+ ;
12

13 OPEN : ’<’ -> pushMode ( INSIDE ) ;
14 XMLDeclOpen : ’<?xml ’ S -> pushMode ( INSIDE ) ;
15 SPECIAL_OPEN : ’<?’ IDENT -> more , pushMode ( PROC_INSTR ) ;
16

17 TEXT : ~[ <&]+ ; // match any 16 bit char other than <
and &

18

19 // ----------------- Everything INSIDE of a tag ---------------------
20 mode INSIDE ;
21

22 CLOSE : ’>’ -> popMode ;
23 SPECIAL_CLOSE : ’?>’ -> popMode ; // close <?xml ...? >
24 SLASH_CLOSE : ’/>’ -> popMode ;
25 SLASH : ’/’ ;
26 EQUALS : ’=’ ;
27 STRINGXML : ’"’ ~[<"]* ’"’
28 | ’\’’ ~[<’]* ’\’’
29 ;
30 Name : NameStartChar NameChar * ;
31 S : [ \t\r\n] -> skip ;
32

33 fragment
34 HEXDIGIT : [a-fA -F0 -9] ;
35

36 fragment
37 DIGIT : [0 -9] ;
38

39 fragment
40 NameChar : NameStartChar
41 | ’-’ | ’_’ | ’.’ | DIGIT
42 | ’\u00B7 ’
43 | ’\u0300 ’..’\u036F ’
44 | ’\u203F ’..’\u2040 ’
45 ;
46

47 fragment
48 NameStartChar
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49 : [:a-zA -Z]
50 | ’\u2070 ’..’\u218F ’
51 | ’\u2C00 ’..’\u2FEF ’
52 | ’\u3001 ’..’\uD7FF ’
53 | ’\uF900 ’..’\uFDCF ’
54 | ’\uFDF0 ’..’\uFFFD ’
55 ;
56

57 IDENT : NameStartChar1 NameChar1 * ; //[a-zA -Z_] [a-zA -Z0 -9]*;
58

59 fragment
60 NameChar1 : NameStartChar1
61 | ’-’ | ’_’ | INT
62 | ’\u00B7 ’
63 | ’\u0300 ’..’\u036F ’
64 | ’\u203F ’..’\u2040 ’
65 ;
66

67 fragment
68 NameStartChar1
69 : [a-zA -Z]
70 | ’\u2070 ’..’\u218F ’
71 | ’\u2C00 ’..’\u2FEF ’
72 | ’\u3001 ’..’\uD7FF ’
73 | ’\uF900 ’..’\uFDCF ’
74 | ’\uFDF0 ’..’\uFFFD ’
75 ;
76

77 fragment INT
78 : ’0’ | [1 -9] [0 -9]*
79 ;
80

81 // ----------------- Handle <? ... ?> ---------------------
82 mode PROC_INSTR ;
83

84 PI : ’?>’ -> popMode ; // close <?...? >
85 IGNORE : . -> more ;

Listing 5.2: XML grammar

The APi grammar establishes the fundamental tokens and parsing rules that dictate
the structure and behavior of programs written in this language. The lexical rules that
define the tokens in the APi grammar are outlined below.

One of the key capabilities of the language is handling REGEXs within its execution
model. The s_regex construct allows the definition of a regular expression-based oper-
ation, where a REGEX pattern is applied to a given string. Additionally, the language
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provides explicit tokens for defining input and output operations, making it easier to
handle data flow.

• s_regex: A function-like construct that applies a REGEX to a given STRING en-
closed in parentheses.

• INPUT: Defines an input directive.

• OUTPUT: Specifies an output directive.

To facilitate interaction with system input-output, the language includes predefined
tokens for managing standard input, output, and error streams. These tokens provide a
structured mechanism to handle process communication efficiently.

• STDOUT: Represents the standard output stream.

• STDERR: Defines the standard error stream.

• STDIN: Refers to the standard input stream.

The language includes several core keywords that define fundamental constructs, such
as types, module imports, and execution environments. These tokens shape the semantics
of function execution and modularity.

• VOID: Represents a void return type, indicating the absence of a meaningful value.

• IMPORT: Declares an import statement, enabling the inclusion of external holon.

Control flow in the language is designed to be event-driven and resilient, allowing the
specification of success and failure handlers, as well as mechanisms for parallel execution
and restart logic.

• ONSUCCESS (&): Defines a directive or operator that executes upon success of a
preceding operation.

• ONFAIL (!): Specifies an operation that executes in case of failure.

• RESTART (+): Represents a restart mechanism, possibly allowing retry logic for
execution.

• PARALLEL (|): Denotes parallel execution.

The language also defines agent-based constructs, used for distributed and concurrent
execution. Agents interact through channels and environments and are capable of self-
referential behavior, allowing dynamic and autonomous execution.
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• START: Marks the beginning of an execution flow.

• SELF: Represents a self-referential element.

• AGENT: Defines an agent element.

• CHANNEL: Represents channel element.

• ENVIRONMENT: Represents environment element.

Since structured data handling is an essential feature, the language supports multiple
data formats, particularly JSON and XML, which allow integration with external systems.

• REGEX: Defines REGEX data handling.

• JSON: Defines JSON data handling.

• XML: Specifies XML data handling.

The language supports two forms of inter-process communication, TCP and UDP.

• A_SENDS (’->’): Defines a basic send operation, likely between agents or processes.

• C_SENDS (TCP | UDP): Specifies connection-oriented (TCP) or connectionless (UDP)
message transmission.

• E_SENDS (TCP_BW | UDP_BW): Denotes bidirectional communication over TCP or
UDP.

• TCP (’–>’) and UDP (’*->’): Represent unidirectional transmission from left to
right using TCP and UDP.

• TCP_BW (’<–’) and UDP_BW (’<-*’): Represent unidirectional transmission from
right to left using TCP and UDP.

The language also includes special tokens to handle null values, comments, and format-
ting. These tokens ensure structured parsing and readability.

• NIL (’0’): Represents a null or empty value, serving as a placeholder for undefined
data.

• COMMENT1 (’// ...’) and COMMENT2 (’/* ... */’): Define single-line and
multi-line comments, allowing annotation and documentation within code.

• WS: Handles whitespace characters, ensuring proper tokenization.

• NEWLINE: Recognizes line breaks, facilitating structured parsing.
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• TAB: Defines tab characters, supporting indentation-based formatting if applicable.

Below is the definition of lexer tokens for the APi grammar.
1 s_input : s_json | s_xml | s_regex ;
2 s_output : s_json | s_xml ;
3 s_xml : XML ’(’ xml ’)’;
4 s_json : JSON ’(’ json ’)’;
5 s_regex : REGEX ’(’ STRING ’)’;
6 INPUT : ’input ’ ;
7 OUTPUT : ’output ’ ;
8 STDOUT : ’stdout ’ ;
9 STDERR : ’stderr ’ ;

10 STDIN : ’stdin ’ ;
11 VOID : ’void ’ ;
12 IMPORT : ’import ’ ;
13 ENVIRONMENT : ’environment ’ ;
14 ONSUCCESS : ’&’ ;
15 ONFAIL : ’!’ ;
16 RESTART : ’+’ ;
17 PARALLEL : ’|’ ;
18 START : ’start ’ ;
19 SELF : ’self ’ ;
20 AGENT : ’agent ’ ;
21 CHANNEL : ’channel ’ ;
22 REGEX : ’regex ’ ;
23 JSON : ’json ’ ;
24 XML : ’xml ’ ;
25 A_SENDS : ’->’ ;
26 C_SENDS : TCP | UDP ;
27 E_SENDS : TCP_BW | UDP_BW ;
28 TCP : ’-->’ ;
29 UDP : ’*->’ ;
30 TCP_BW : ’<--’ ;
31 UDP_BW : ’<-*’ ;
32 NIL : ’0’ ;
33 COMMENT : COMMENT1 | COMMENT2 ;
34 COMMENT1 : ’//’~[\n]* ;
35 COMMENT2 : ’/*’ .*? ’*/’ ;
36 WS : [ \f\r] ;
37 NEWLINE : [\n] ;
38 TAB : [\t] ;

Listing 5.3: APi grammar lexer tokens

The APi grammar defines the core execution flow of the language, specifying how
programs are structured and how different components interact. The entry point of a
program is represented by api_program, which consists of multiple elements such as
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imports, environment definitions, channels, agents, and execution rules.
api_program represents the top-level structure of the program. It can include s_import

statements for external modules (specifically, holons), environment definitions (s_environment
and s_environment_forward), channel specifications (s_channel and s_channel_forward),
agent definitions (s_agent), a start construct (s_start) for execution flows, and also al-
lows comments (COMMENT) or newlines (NEWLINE).

The environment is introduced using the environment keyword, which allows defining
or forwarding environment configurations. These environments specify how data flows
into and out of the program.

• s_environment: Declares an execution environment with multiple input (iflow) or
output (oflow) flows.

• s_environment_forward: Forwards or references an existing environment definition
elsewhere.

• iflow: Defines how an external input (INPUT) is sent into the system (C_SENDS)
and bound to a specific input spec (s_input).

• oflow: Describes how an output (OUTPUT) is transmitted out of the system (E_SENDS),
paired with a particular output spec (s_output).

The s_start rule indicates where an execution flow begins, linking to a pi_expr.
This process expression describes the flow of execution, allowing parallelism, success and
failure handlers, and sequential logic.

• s_start: Initiates execution by referencing a process expression (pi_expr).

• pi_expr: Allows grouping expressions with parentheses, chaining operations in par-
allel (PARALLEL), reacting to success (ONSUCCESS) or failure (ONFAIL), restarting
execution (RESTART), and defining sequential or functional calls (IDENT ( arglist
)?).

Agents represent autonomous entities in the language. Each agent has a name, op-
tional arguments, and rules (aflow) describing how it sends messages between channels.

• s_agent: Defines an agent with a unique identifier, optional arguments, and com-
munication logic.

• arglist: Lists arguments passed to the agent, enabling parameterization.

• aflow: Specifies message-passing behavior (A_SENDS) between channels (or special
identifiers like SELF, NIL, STDIN, STDOUT, STDERR, VOID).
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Channels are communication interfaces that can either be used as pass-through mech-
anisms or configured to apply transformations to the transmitted data.

• s_channel: Declares a channel, assigning it an identifier and specifying its behavior.

• s_channel_forward: References a channel by name and forwards its definition.

• s_channel_spec: Provides the mechanics of a channel by specifying s_input, how
it is sent (C_SENDS), and the corresponding s_output.

Import statements allow bringing external modules or dependencies into the program
scope, enabling modular design.

• s_import: Integrates an external holon via IMPORT IDENT.

By combining these rules, the grammar supports a robust structure for programs
that handle environments, agents, channels, and execution flows. The process expres-
sions (pi_expr) provide flexibility for parallel execution, error handling, and sequential
composition, while agents and channels foster asynchronous communication.

1 api_program : ( s_import | s_environment | s_environment_forward |
s_channel | s_channel_forward | s_agent | s_start | COMMENT | NEWLINE

)*? ;
2 s_environment : ENVIRONMENT WS ’:’ NEWLINE ( iflow | oflow )+ ;
3 s_environment_forward : ENVIRONMENT WS ’.’ NEWLINE ;
4 iflow : TAB INPUT WS C_SENDS WS s_input NEWLINE ;
5 oflow : TAB OUTPUT WS E_SENDS WS s_output NEWLINE ;
6 s_start : START WS pi_expr ;
7 pi_expr : ’(’ pi_expr ’)’
8 | pi_expr RESTART
9 | pi_expr WS PARALLEL WS pi_expr

10 | pi_expr WS ONSUCCESS WS pi_expr
11 | pi_expr WS ONFAIL WS pi_expr
12 | pi_expr WS pi_expr
13 | IDENT ( arglist )?;
14 s_agent : AGENT WS IDENT ( arglist WS )? ’:’ NEWLINE aflow+ ;
15 arglist : ’(’ IDENT (WS IDENT)* ’)’;
16 aflow : TAB valid_channel WS A_SENDS WS valid_channel NEWLINE ;
17 valid_channel : IDENT | SELF | NIL | STDIN | STDOUT | STDERR | VOID ;
18 s_channel : CHANNEL WS IDENT WS ’:’ NEWLINE s_channel_spec ;
19 s_channel_forward : CHANNEL WS IDENT WS ’.’ NEWLINE ;
20 s_channel_spec : TAB s_input WS C_SENDS WS s_output NEWLINE ;
21 s_import : IMPORT IDENT NEWLINE ;

Listing 5.4: APi grammar lexer rules
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5.1.2 Parser

The parser is generated from an ANTLR grammar written to specify the syntax of the APi
language. Its role is to read the code written in APi, recognize the constructs of agents,
channels, environments, execution plans, and holons, and produce internal Python data
structures that the declarative engine later consumes. When an APi agents’ orchestration
specification is parsed, it is processed according to the rules defined in the grammar file.
From these rules, ANTLR generates both a lexer and a parser. The lexer converts raw
text into a series of tokens, and the parser arranges those tokens into a parse tree. After
that, a listener class is used to walk this parse tree and perform custom logic at each
recognized rule. In this system, the listener in question is a Python class named APi,
which inherits from the automatically generated APiListener.

One of the core components used by the listener is the APiNamespace class. This
class acts as a container for the objects the parser discovers in the code, such as agents,
channels, environments, and holons. It also stores any execution plans that the APi
specification includes. The code for APiNamespace is:

1 class APiNamespace :
2 def __init__ (self):
3 self. agents = []
4 self. channels = []
5 self. environment = None
6 self. execution_plans = []
7 self. holons = []
8

9 def add_agent (self , agent):
10 self. agents . append (agent)
11

12 def add_channel (self , channel ):
13 self. channels . append ( channel )
14

15 def add_environment (self , environment ):
16 self. environment = environment
17

18 def add_execution_plan (self , plan):
19 self. execution_plans . append (plan)
20

21 def add_holon (self , holon):
22 self. holons . append (holon)

Listing 5.5: APiNamespace implementation

Each list or attribute in APiNamespace corresponds to a top-level construct in the
language. agents holds all the agent definitions, channels holds the channel definitions,
environment stores a single environment object that captures input and output para-
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meters, execution_plans is a list of any instructions about how to start or coordinate
the specification, and holons collects references to any externally imported modules or
components.

The listener class is where parsing logic is actually implemented. It overrides the gen-
erated methods from APiListener so that it can collect information about the language
constructs as the parse tree is walked. This is done by populating the APiNamespace
object. The APi class defines its own init method to instantiate an APiNamespace and
maintain a stack used for intermediate parse results. The stack is a Python list named
STACK.

Whenever a rule in the grammar begins to match parts of the APi code, ANTLR
calls the enter method for that rule in the listener. In contrast, when the rule finishes,
it calls the exit method. It is typical in this design to do most of the logic in the exit
methods. For instance, take the rule for parsing the environment. The environment can
be specified with input flows, output flows, or both, using symbolic arrow notations that
correspond to different protocols. The listener records these flows in the STACK while the
parser is within the iflow or oflow rules. Then, when the environment rule finishes, its
exit method assembles and adds the environment dictionary to the APiNamespace:

1 def exitS_environment (self , ctx: APiParser . S_environmentContext ):
2 input = None
3 input_protocol = "tcp"
4 output = None
5 output_protocol = "tcp"
6 while len(self.STACK) > 0:
7 entry = self.STACK.pop ()
8 if entry["type"] == "input":
9 input = entry["value"]

10 input_protocol = entry[" protocol "]
11 elif entry["type"] == " output ":
12 output = entry["value"]
13 output_protocol = entry[" protocol "]
14 environment = {
15 "input": input ,
16 " output ": output ,
17 " input_protocol ": input_protocol ,
18 " output_protocol ": output_protocol ,
19 }
20 self.ns. add_environment ( environment )

Listing 5.6: APi grammar transformative environment
rule parsing implementation

This logic gathers whatever was put on the stack in the form of input or output flows.
The dictionary it constructs collects the input, output, and their respective protocols,
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defaulting to TCP when the user does not specify otherwise. Finally, the dictionary is
added to self.ns, which is the APiNamespace instance. A similar approach is taken for
an environment that is only declared in a forward manner, meaning no explicit input or
output are defined:

1 def exitS_environment_forward (self , ctx: APiParser .
S_environment_forwardContext ):

2 environment = {
3 "input": None ,
4 " output ": None ,
5 " input_protocol ": "tcp",
6 " output_protocol ": "tcp",
7 }
8 self.ns. add_environment ( environment )

Listing 5.7: APi grammar forward environment rule
parsing implementation

APi code can include a variety of flows such us iflow and oflow. Their enter methods
push entries onto the stack so that the environment or agent rule that encloses them can
gather them later:

1 def enterIflow (self , ctx: APiParser . IflowContext ):
2 protocol_symbol = ctx. children [3]. getText ()
3 protocol = "tcp" if protocol_symbol == " -->" else "udp"
4 input = ctx. children [5]. getText ()
5 self.STACK. append ({"type": "input", "value": input , " protocol ":

protocol })
6

7 def enterOflow (self , ctx: APiParser . OflowContext ):
8 protocol_symbol = ctx. children [3]. getText ()
9 protocol = "tcp" if protocol_symbol == " <--" else "udp"

10 output = ctx. children [5]. getText ()
11 self.STACK. append ({"type": " output ", "value": output , " protocol ":

protocol })

Listing 5.8: APi grammar iflow rule parsing
implementation

Agents rely on a similar pattern. The grammar rule for an agent might accept a name,
an optional argument list, and multiple flows that define communications or relationships.
The exit method for s_agent looks like this:

1 def exitS_agent (self , ctx: APiParser . S_agentContext ):
2 a_name = ctx. children [2]. getText ()
3 flows = []
4 args = None
5 while len(self.STACK):
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6 exp = self.STACK.pop ()
7 type = exp["type"]
8 value = exp["value"]
9 if type == "flow":

10 flows. append (value)
11 else:
12 args = value
13 agent = {"name": a_name , "args": args , "flows": flows}
14 self.ns. add_agent (agent)

Listing 5.9: APi grammar agent rule parsing
implementation

This series of parsing steps and listener methods transforms an APi program text into
structured data within the APiNamespace, which is then consumed by the declarative en-
gine. ANTLR builds the parse tree, while the listener extracts and assembles components
using a stack-based approach. As each rule is exited, stored sub-components are retrieved
and combined into cohesive entities. This method ensures a clear separation between
parsing logic and data representation, making the parser maintainable and adaptable as
the language evolves. Similar steps are followed for other entities, ensuring consistency in
parsing across different constructs.

5.1.3 Agents’ orchestration specification

The agents’ orchestration specification is written in the proposed programming language
and stored as a text file with the .api extension. It serves as a declarative blueprint for
how agents exchange messages.

There are no mandatory constructs in the specification, offering adaptability based
on the system’s requirements. However, a comprehensive specification typically follows a
structured order for clarity and maintainability. It begins with holons import, followed by
environment configuration, then channels, agents, and finally, one or more execution flows
that dictate the MAS dynamic behavior. Below is a sample showcasing the specification
syntax:

1 // Import holons
2

3 // Configure environment
4

5 // Configure channels
6

7 // Configure agents
8

9 // Configure execution flows
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Listing 5.10: Agents’ orchestration specification
structure

Where a concrete example would look as follows:

1 import holon_2
2

3 environment .
4

5 channel c .
6

7 agent a :
8 ENV_INPUT -> self
9 self -> c

10

11 agent b :
12 c -> self
13 self -> ENV_OUTPUT
14

15 start a | b

Listing 5.11: Agents’ orchestration specification
example

The example above describes a system in which holon_2 is an external holon from
which this holon reads outputs through its environment interface. Two agents, a and b,
start in parallel. Whatever is received through this holon’s input environment is read by
agent a. Agent a sends messages to a channel named c, while agent b listens for messages
from c, processes them, and sends the output to the output environment.

As seen above, to import another holon, include an import statement specifying the
holon’s name. This represents a link indicating that the current holon should receive
messages from the imported holon. This essentially means that if imported holon sends
a message to its environment output, the current holon input environment will consume
the message. The keyword import is used, followed by any valid holon name, indicating
that the named holon is available for interaction.

1 import holon_2

Listing 5.12: Holon import declaration

The environment in the specification defines how the holon interacts with external
systems. It can take one of two formats: forward environment or transformative environ-
ment.

A forward environment simply passes data through, meaning that values reaching the
environment remain unchanged. No transformation, parsing, or extraction is applied. Its
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declaration follows a minimal syntax:

1 environment .

Listing 5.13: Transparent environment declaration

A transformative environment, on the other hand, allows for modifications to incoming
and outgoing values. It specifies how input data should be extracted or parsed and how
output data should be transformed before transmission. The syntax explicitly defines
these transformations:

1 environment :
2 input *-> json ({’val1 ’:?x})
3 output <-* json ({’val5 ’:?x})

Listing 5.14: Transformative environment declaration

Additionally, the environment can communicate using either TCP or UDP. The notation
for message directionality depends on the chosen protocol:

• UDP communication uses *-> for sending and <-* for receiving messages.

• TCP communication uses -> for sending and <- for receiving messages.

This distinction allows the specification to clearly define how data flows between holons
and external systems. A holon may only have one input and output environment, and as
a result, name assignment for the environment is not supported.

The channel configuration defines how messages are exchanged within the system.
Similar to the environment, channels can operate in a forward or transformative manner.
However, unlike the environment, multiple channels can be defined, and each is assigned
a unique name following the channel keyword.

A forward channel functions as a simple message relay, passing values without modi-
fication. Its syntax follows a minimal structure:

1 channel c .

Listing 5.15: Transparent channel declaration

A transformative channel, on the other hand, allows for message parsing and trans-
formation. It specifies how input messages are extracted and how they should be format-
ted before being sent to the next processing stage. The following example demonstrates
a channel with transformation:

1 channel c :
2 json ({"data": ?var }) --> xml(<Abc test="?var" />)

Listing 5.16: Transformative channel declaration
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In this case, the input message is in JSON format, containing a field named "data",
which is mapped to the variable ?var. The extracted value is then transformed into an
XML message, where ?var is inserted into the test attribute of the <Abc> tag. Aside
from JSON and XML, environment and channels may also work with REGEX pattern
matching. Similar to environments, channels can communicate using either TCP or UDP,
with different notation for message directionality.

Agents define active components in the system that send and receive messages through
channels, environment, or standard input-output interfaces. Every agent is always asso-
ciated with a name, which follows the agent keyword. Agents can either have a fixed
configuration or accept parameters that refer to channels.

A static agent has its communication channels explicitly defined. For example:
1 agent a :
2 self -> c

Listing 5.17: Agent declaration

In this case, a sends messages to the channel c. Since self appears on the left side of
->, it means that the agent is the sender, and c is the destination channel.

An agent can also take parameters, making it more flexible. When an agent is para-
meterized, the channels it communicates with are passed as arguments instead of being
hardcoded. For example:

1 agent a(c) :
2 c -> self

Listing 5.18: Parametrized agent declaration

Here, a is parameterized with a channel c, meaning it listens for messages from c.
Since self is on the right side of ->, this indicates that the agent is the recipient of
messages sent through the channel.

An agent may have multiple communication definitions within its specification, allow-
ing it to both send and receive messages through different channels. For example:

1 agent a :
2 c -> self
3 d -> self
4 self -> b

Listing 5.19: Agent with multiple communication flows
declaration

In this case, a listens for messages from both c and d, while also sending messages to
b. An agent must always include self in its definition, ensuring that it participates in
at least one communication flow. If self is on the left side of ->, the agent is sending
a message to a channel. If self is on the right side, the agent is receiving a message
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from a channel. Since agents can only communicate with channels, every message sent or
received must be associated with a defined channel.

Execution flows define the sequence in which agents are started within the system.
They describe how agents are initialized and managed during execution. There may be
multiple execution flows within a specification, allowing for flexible process definitions.

An execution flow always begins with the start keyword, followed by the names of
the agents to be executed, optionally including operators that define execution behavior.

A previously parameterized agent can be instantiated within an execution flow by
providing specific arguments. For example:

1 start a(c)
2 start a(d)

This means that agent a is started twice, once with channel c and once with channel
d, allowing for multiple independent instances.

Agents can also be started in parallel using the | operator:

1 start a | b

Listing 5.20: Parallel agent startup declaration

In this case, both a and b are started at the same time, running concurrently.
For sequential execution, where one agent must successfully complete before the next

one starts, the & operator is used:

1 start a & b

Listing 5.21: Conditional agent startup on successful
completion declaration

Here, a is started first. If it completes successfully, then b is started.
To define an error-dependent execution, where the second agent runs only if the first

one encounters an error, the ! operator is used:

1 start a ! b

Listing 5.22: Conditional agent startup on failed
completion declaration

This means that b will only start if a fails.
An agent can also be configured to restart indefinitely once it completes using the +

operator:

1 start a+

Listing 5.23: Restartable agent startup declaration

This ensures that a will be restarted each time it finishes execution.
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5.2 Orchestration platform

The orchestration platform is built using Python technologies, and its primary objective is
to consume agents’ orchestration specifications through a declarative engine to orchestrate
agents effectively. The engine operates recursively when reading the specification, as the
specification itself may contain holons, which are components of other specifications.

Within the declarative engine, holons, environments, and channels are core elements
specifically designed for message passing and agent connectivity. A holon encapsulates
information about the environments, channels, and agents it comprises and is responsible
for establishing connections with each element instance using the XMPP protocol and the
SPADE framework. XMPP serves as the foundational layer for initiating communication
[93, 70, 31].

Once communication is established, the channels, environments, and agents interact
using either the UDP or TCP protocol. This hybrid approach enables the system to
leverage the strengths of both protocols. Such flexibility allows the orchestration platform
to optimize performance based on the specific requirements of the agents’ orchestration
specification.

Due to the flexibility of the agent architecture in handling various communication
contracts, an agent wrapper is introduced. This wrapper functions as a socket, facilitating
the conversion of input and output messages between the agent and the platform. It
ensures that messages are properly formatted for communication with other entities via
TCP or UDP.

The socket is designed to support multiple communication protocols for agent input
and output, enabling integration with diverse systems. The supported protocols include:
STDIN, FILE (which translates file-based communication into shell commands), HTTP, WS,
and Netcat.

As a summary, the communication inside the orchestration goes as:

1. XMPP serves as the initial communication layer between holons, channels, environ-
ments, and agents. It is primarily responsible for establishing connections, exchan-
ging communication metadata, and tracking state changes across entities.

2. TCP & UDP are the primary transport protocols for passing agent messages (actual
content) between agents, channels, and environments.

3. The agent wrapper socket supports various protocols (STDIN, FILE, HTTP, WS,
and Netcat) to facilitate flexible agent communication, allowing integration with
different execution environments.

Figure 5.2 illustrates how multiple holons, along with their constituent entities, engage
in communication and interaction.
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Figure 5.2: APi ecosystem

5.2.1 Agents’ orchestration specification consumption

To start the orchestration platform and initialize the necessary agents, channels, and
environments that constitute a holon, an agents’ orchestration specification file must be
provided. This file should have an .api extension, as it serves as the core configuration
for orchestrating interactions within the MAS.

The following function extracts the orchestration specification name from the provided
command-line arguments:

1 def extract_orchestration_specification_name () -> str:
2 if len(sys.argv) > 2:
3 logger .info("Usage: APi [ filename .api]")
4 else:
5 if len(sys.argv) == 2:
6 file_name = sys.argv [1]
7 splits = file_name .split(".")
8 return splits [0]
9 else:

10 logger .info("Not supported at this time")
11 return None

Listing 5.24: Agent’s orchestration specification loading

The process of programming language grammar generation produces a parser and a
lexer, which are used to parse and extract relevant entities from the communication flow
specification, as illustrated below:

1 def read_specification_from_file (fl: str) -> APiNamespace :
2 stream = FileStream (fl , encoding ="utf -8")
3 lexer = APiLexer ( stream )
4 return process (lexer)
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Listing 5.25: Utilization of lexer and parser to extract
values from agents’ orchestration specification

A specification may reference other holons, in which case the system recursively loads
all associated specifications to capture their interdependencies across multiple files. This
approach ensures a comprehensive and interconnected execution of the defined commu-
nication flows. The following function facilitates this recursive loading process:

1 def generate_namespaces ( configuration_name : str) -> Dict:
2 file_name = _ORCHESTRATION_FILE_NAME_TEMPLATE . format ( file_name =

configuration_name )
3 file_name = " orchestration_specifications /" + file_name
4 return read_specification_files_recursively ( file_name )

_specification_files_recursively ( file_name )

Listing 5.26: Recursive load of imported holons of
agents’ orchestration specification

The primary script, main.py, is responsible for loading the holon specifications and
orchestrating their interactions. It enables effective communication among holons by
subscribing them to their respective input and output environments. The process begins
by extracting the orchestration specification name, followed by generating namespaces
that contain all relevant holon definitions. Each holon is then registered and initialized
accordingly:

1 orchestration_specification_name =
extract_orchestration_specification_name ()

2 if not orchestration_specification_name :
3 exit ()
4

5 ns = generate_namespaces ( orchestration_specification_name )
6 holon_names = list(ns.keys ())
7

8 rs = APiRegistrationService ( orchestration_specification_name )
9

10 holons_addressbook = {}
11 for holon in holon_names :
12 h1name , h1password = rs. register (holon)
13 holons_addressbook [holon] = {" address ": h1name , " password ":

h1password }
14

15 for holon , namespace in ns.items ():
16 agents = namespace . agents
17 channels = namespace . channels
18 environment = namespace . environment
19 execution_plans = namespace . execution_plans
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20 holons = namespace . holons
21 holon_addresses = {ch: holons_addressbook [ch][" address "] for ch in

holons }
22

23 creds = holons_addressbook [holon]
24 h = APiHolon (
25 holon ,
26 creds[" address "],
27 creds[" password "],
28 agents ,
29 channels ,
30 environment ,
31 holon_addresses ,
32 execution_plans ,
33 )
34 h.start ()

Listing 5.27: Address book generation for inter-
connected holons

As previously mentioned, entities within the orchestration platform communicate with
one another using the XMPP [93]. This ensures metadata exchange between agents,
channels, and environments.

To facilitate this communication, the system includes an APiRegistrationService
class, which reads the MAS configuration file. This configuration file contains essential
details about the system, such as XMPP server settings and port allocations. The name
of this configuration file must match the initial communication flow specification file, but
with a .cfg extension.

Below is an example of a configuration file:

1 registration - services :
2 - "rec.foi.hr :49999 "
3 - " dragon .foi.hr"
4 port - range :
5 min: 3000
6 max: 5000

Listing 5.28: Example MAS configuration file

The properties defined in this file specify the XMPP server details and define the
range of ports that channels and environments can use for establishing TCP and UDP
connections. These settings enable efficient communication across different holons within
the system.

The APiRegistrationService class includes a register method responsible for regis-
tering accounts on the XMPP server for each individual entity. This ensures that every
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holon has unique credentials for authentication and communication. The registration
process dynamically generates a username and password for each holon:

1 def register (self , holon_name : str) -> str:
2 username = "%s_%s_%s" % (self.mas_name , holon_name , str(uuid4 ().

hex))
3 password = str(uuid4 ().hex)
4 host = settings . xmpp_host
5

6 return ("%s@%s" % (username , host), password )

Listing 5.29: Authentication details generation for
XMPP communication

5.2.2 Holon

Holon primarily relies on XMPP and acts as a top-level coordinator for all agents, chan-
nels, and an optional environment in this MAS. By centralizing control in holon, the
system ensures that agents are not burdened with discovering each other’s addresses or
orchestrating execution logic. Instead, each agent simply carries out its individual tasks
once it receives the necessary parameters and addresses from holon [93, 70, 31].

The class APiHolon inherits from a base class called APiCommunication, which already
handles lower level message sending and receiving. The constructor of holon begins by
setting up references to environments, channels, and agent instances. Every element
involved in communication, regardless of type, requires a unique address and password in
the XMPP domain. The class APiRegistrationService handles these registrations.

Below is a relevant portion of holon’s constructor showing the initial setup:

1 class APiHolon ( APiCommunication ):
2

3 def __init__ (
4 self ,
5 holonname ,
6 name ,
7 password ,
8 agents ,
9 channels ,

10 environment ,
11 holons_addressbook ,
12 execution_plans ,
13 ):
14 self.token = str(uuid4 ().hex)
15 super (). __init__ (name , password , str(uuid4 ().hex))
16 self. holonname = holonname
17 self. address = str(self.jid.bare ())
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18 self. namespace = APiNamespace ()
19 self. registrar = APiRegistrationService ( holonname )
20

21 self. environment = None
22 if environment :
23 self. setup_environment ( environment )
24

25 self. channels = {}
26 for c in channels :
27 self. setup_channel (c)
28

29 self. agent_types = {}
30 self. agents = {}
31 for a in agents :
32 self. create_agent_types_map (a)
33

34 self. holons = holons_addressbook
35

36 self. execution_plans = None
37 if len( execution_plans ) > 0:
38 self. setup_execution ( execution_plans )
39

40 self. all_channels_listening = False
41 self. all_agents_listening = False
42

43 self. all_started = False # Indicate if execution plan has been
started already

44 self. start_env_and_channels ()

Listing 5.30: APiHolon constructor

When the holon invokes methods like setup_channel or setup_agent, it requests
credentials from the registrar and then constructs a command line that launches the
corresponding script as a separate process. Below is the channel initialization code:

1 def setup_channel (self , channel : Dict) -> None:
2 address , password = self. registrar . register ( channel ["name"])
3 logger .debug(f" Registering channel { channel [’name ’]}")
4

5 # NOTE: This should be updated if channel .py is moved around
6 channel ["cmd"] = (
7 ’poetry run python ../ src/ agents / channel .py "%s" "%s" "%s" "%s"

"%s" "%s" "%s" "%s" "%s"’
8 % (
9 channel ["name"],

10 address ,
11 password ,
12 self.address ,
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13 self.token ,
14 json.dumps (( self. registrar .min_port , self. registrar . max_port

)),
15 channel [" protocol "],
16 json.dumps( channel ["input"]). replace (’"’, ’""’),
17 json.dumps( channel [" output "]). replace (’"’, ’""’),
18 )
19 )
20 channel [" address "] = address
21 channel [" status "] = "setup"
22 self. channels [ channel ["name"]] = channel

Listing 5.31: Channel initialization

The environment is similarly set up via setup_environment, but it is typically used
to simulate or interact with external conditions. Once holon has registered each channel
and environment, it spawns them in threads using start_env_and_channels:

1 def start_env_and_channels (self) -> None:
2 if self. environment :
3 cmd = shlex.split(self. environment ["cmd"])
4 logger .debug(f" Running environment : {self. environment .get(’name

’)}")
5 self. environment [" instance "] = Thread ( target =self.

start_basic_agent_thread , args =(cmd ,))
6 self. environment [" instance "]. start ()
7 self. environment [" status "] = " started "
8

9 for c in self. channels . values ():
10 cmd = shlex.split(c["cmd"])
11 logger .debug(f" Running channel : {c.get(’name ’)}")
12 c[" instance "] = Thread ( target =self. start_basic_agent_thread ,

args =(cmd ,))
13 c[" instance "]. start ()
14 c[" status "] = " started "

Listing 5.32: Environments and channels startup

Each thread eventually calls subprocess.Popen(...) inside start_basic_agent_thread,
allowing channels or environments to run in separate processes. They subsequently send
messages to holon indicating that they are ready or listening.

For agents, holon maintains a mapping in self.agent_types, and each agent is re-
gistered and prepared using a command string similar to that of a channel. In setup_agent,
holon retrieves or generates a unique address for the agent, possibly adjusts that agent’s
communication flows with adjust_flows_by_args, and then constructs a startup com-
mand referencing agent.py:
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1 def setup_agent (
2 self , agent_type : str , id: str = None , plan_id : str = None , params :

List = None
3 ) -> None:
4 if not id:
5 id = uuid4 ().hex
6

7 agent = deepcopy (self. agent_types [ agent_type ])
8 logger .debug(f" Registering agent {agent[’name ’]}")
9 address , password = self. registrar . register (agent["name"])

10 if params :
11 flows = self. adjust_flows_by_args (agent["args"], params , agent["

flows"])
12 else:
13 flows = agent["flows"]
14

15 # NOTE: This should be updated if agent.py is moved around
16 agent["cmd"] = (
17 ’poetry run python ../ src/ agents /agent.py "%s" "%s" "%s" "%s" "%

s" "%s" "%s"’
18 % (
19 agent["name"],
20 address ,
21 password ,
22 self.address ,
23 self.holonname ,
24 self.token ,
25 json. dumps(flows). replace (’"’, ’\\" ’),
26 )
27 )
28 agent[" address "] = address
29 agent[" status "] = "setup"
30 agent["id"] = id
31 agent[" plan_id "] = plan_id
32 self. agents [id] = agent

Listing 5.33: Agent initialization

The address book is a structure in holon that stores references to channels, environ-
ments, agents, and other holons by an identifier. Once an agent finishes its initialization
and is ready, it explicitly queries holon over XMPP for the specific addresses it needs.
Below is a snippet from the RequestForAddress behavior illustrating this flow:

1 class RequestForAddress ( CyclicBehaviour ):
2

3 async def run(self) -> None:
4 msg = await self. receive ( timeout =0.1)
5 if msg:

101



Chapter 5. Implementation 5.2. Orchestration platform

6 if self.agent. verify (msg):
7 logger .debug("( RequestForAddress ) Message verified ,

processing ...")
8 channel = msg. metadata [" channel "]
9 metadata = deepcopy (self.agent. query_message_template )

10 metadata ["in -reply -to"] = msg. metadata ["reply -with"]
11 metadata ["agent"] = channel
12

13 try:
14 if (
15 channel == " ENVIRONMENT " or channel == self.

agent. holonname
16 ) and self.agent. environment is not None:
17 address = self.agent. environment [" address "]
18 else:
19 address = self.agent. channels [ channel ][" address "

]
20

21 logger .debug(f"Found channel { channel } address is {
address }")

22

23 metadata [" success "] = "true"
24 metadata [" address "] = address
25 except KeyError :
26 logger .debug(f" Channel { channel } not found")
27 metadata [" success "] = "false"
28 metadata [" address "] = "null"
29 await self.agent. schedule_message (str(msg. sender ),

metadata = metadata )

Listing 5.34: Holon SPADE behaviour used for agent
requesting address of other entity

A distinguishing feature is how holon interprets a custom execution flow specific-
ation that defines the order and conditions under which agents execute. Holon calls
resolve_execution_plan to parse the execution flow. Below is an excerpt:

1 def resolve_execution_plan ( execution_plan : str) -> Tuple[str , Dict , List
]:

2 # find out paralel flows
3 parallel = execution_plan .split("|")
4

5 # trim and remove unused chars
6 cleaned_exp = [ _extract_args_and_clean_up (exp) for exp in parallel ]
7

8 # resolve agents and operations
9 parallel_flows = [ _get_agents_and_operations (item) for item in

cleaned_exp ]
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10

11 # get initial agents to run
12 initial_agents = _get_initial_agents_to_run ( parallel_flows )
13

14 # flattening all agents across different parallel flows into a high -
level map (no nesting )

15 agents = {}
16 for flow in parallel_flows :
17 agents = {** agents , ** flow}
18

19 return {
20 "id": uuid4 ().hex ,
21 "plan": agents ,
22 " initial_agents_to_run ": initial_agents ,
23 " started ": False ,
24 }

Listing 5.35: Parsing execution flow

Helper functions (_extract_args_and_clean_up and _get_agents_and_operations)
ensure that each agent in the plan is assigned:

• A unique ID

• An optional operator indicating the condition for triggering the next agent

• A potential succeeding agent ID, linking to another agent that should launch next

Once the plan is parsed, holon knows which agents need to start up first. It launches
them using start_initial_agents, while any subsequent agents start only after holon
detects that the preceding agents have finished (with or without error), or in parallel if
that is indicated in the execution flow.

When agents finish, the agent_finished method in holon processes the finish event
to decide the next step:

1 def agent_finished (self , a_id: str , plan_id : str , status_code : int) ->
None:

2 plan = None
3 for p in self. execution_plans :
4 if p["id"] == plan_id :
5 plan = p
6 agent_exec = plan["plan"]. get(a_id , None)
7

8 # may not be needed , unless errored
9 self. agents [a_id ][" status "] = " stopped "

10

11 operator = agent_exec [" operator "]
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12 succeeding_agent_id = None
13 # start agent again
14 if operator == "+":
15 succeeding_agent_id = a_id
16 # start new agent if current errors
17 elif operator == "!":
18 if status_code != 0:
19 succeeding_agent_id = agent_exec [" succeeding_agent_id "]
20 # start new agent if current succeeds
21 elif operator == "&":
22 if status_code == 0:
23 succeeding_agent_id = agent_exec [" succeeding_agent_id "]
24 # no matter the status , start the new agent
25 elif not operator :
26 succeeding_agent_id = agent_exec [" succeeding_agent_id "]
27

28 succeeding_agent = None
29 if succeeding_agent_id is not None:
30 for a in self. agents . values ():
31 if a["id"] == succeeding_agent_id :
32 succeeding_agent = a
33

34 if succeeding_agent is not None:
35 self. run_agent_thread ( succeeding_agent , " dependant ")

Listing 5.36: Agent on finished handler

Holon logic utilizes SPADE behaviors to stay informed about the agents’ life cycle.
For instance, the FinishedAgents behavior is responsible for detecting messages with the
state finished, verifying them to ensure authenticity, and updating statuses to stopped.
If an error is reported, holon logs it. Likewise, other behaviors such as GetReadyAgents
and GetListeningAgents handle messages from agents, channels, environments indicat-
ing readiness. Below is the implementation of the FinishedAgents behavior:

1 class FinishedAgents ( CyclicBehaviour ):
2 async def run(self) -> None:
3 msg = await self. receive ( timeout =0.1)
4 if msg:
5 if self.agent. verify (msg):
6 logger .debug("( FinishedAgents ) Message verified ,

processing ...")
7 agent = self.agent. agent_name_from_address (msg. sender .

bare ())
8

9 if msg. metadata ["error - message "] != "null":
10 logger .debug(
11 f"Agent {agent} finished with error {str(msg[’
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error - message ’])}"
12 )
13 else:
14 logger .debug(f"Agent {agent} finished gracefully .")
15 self.agent. agents [agent ][" status "] = " stopped "
16

17 # sending message to ack that agent has stopped , so they
can terminate

18 metadata = deepcopy (self.agent. confirm_message_template )
19 metadata [" action "] = " finish "
20 metadata ["in -reply -to"] = msg. metadata ["reply -with"]
21

22 await self.agent. schedule_message (str(msg. sender ),
metadata = metadata )

Listing 5.37: Holon SPADE behavior used for handling
agent completion

This decentralized messaging allows each agent to focus solely on its domain tasks.
Agents report their status (start, error, or completion) back to holon via XMPP, and
holon coordinates subsequent steps according to the execution plan. This architecture
provides a clear separation of concerns, with holon orchestrating the work:

• Registration: Creating unique addresses and credentials for each entity

• Process spawning: Launching channels, environments, and agents as separate pro-
cesses

• Address book distribution: Selectively providing element instances with only the
addresses they actually need

• Execution flow: Specifying the order in which agents start and how they depend on
one another

• Life cycle event processing: Listening for agent statuses (ready, error, finished) and
reacting to them dynamically

Agents do not need to discover one another’s addresses or interpret complex orches-
tration logic. After registering themselves and declaring they are ready, they carry out
their specialized tasks and then inform holon of any relevant results, including errors. Any
restarts, fallback logic, or parallel coordination is handled by holon, which remains the
global authority on how the entire MAS proceeds. This approach keeps the system highly
modular, making it simple to add new agents, introduce alternate flows, or reconfigure
channels and environments without modifying the agents’ internal code.
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Figure 5.3: Communication between different entities in
a holon

Figure 5.3 illustrates the communication flow within holon among environment, chan-
nel, and agents. Environment and channel are initialized first, ensuring they are active
before any agents come online. Once those are running, holon sets up agent A, which
notifies holon that it is ready and then queries holon over XMPP for the channel and
environment addresses. Agent A uses these addresses to exchange messages via TCP or
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UDP as needed. Once agent A completes its task, it reports its status back to holon,
prompting holon to determine whether additional agents should be spawned. In this
example, agent B follows the same sequence: requesting addresses from holon, engaging
in communication, and finally reporting completion via XMPP. If holon decides to halt
the system, it can stop all running entities by sending them a stop signal, ensuring a
coordinated shutdown.

5.2.3 Channel

The channel serves as a communication proxy between agents. It facilitates interaction
using either UDP or TCP protocols, ensuring message exchange. Additionally, it can
extract values from incoming messages and map them to the expected output, allowing
for flexible data transformation.

The APiChannel class implements the described communication mechanisms. It is
built on the SPADE framework, utilizing structured behaviors to handle agent interac-
tions. The APiChannel instance enables agents to subscribe for incoming messages or
attach as a sender, ensuring that messages are efficiently routed and optionally trans-
formed [70].

The APiChannel class extends APiBaseChannel, which provides the foundational im-
plementation for managing communication channels, defining mapping strategies, and
handling server-client interactions. APiBaseChannel is responsible for initializing the com-
munication infrastructure, setting up transformation mechanisms, and managing socket
connections, while APiChannel builds upon this by adding specific behaviors for handling
subscription and attachment of agents.

The APiChannel implements SPADE behaviors to manage the initial setup of agent
interactions. The two primary behaviors are:

• SubscriptionRequest: Allows an agent to request permission to listen for messages
sent to the channel, as well as to send messages.

• AgentMessageListening: A behavior responsible for listening for incoming mes-
sages and forwarding them to subscribed agents.

Each behavior ensures structured interaction through XMPP, allowing agents to com-
municate in a standardized manner. When an agent sends a message with the subscribe
performative to the channel via the XMPP, it indicates that the agent wishes to listen
for incoming messages. The agent’s connection is then registered, allowing it to receive
messages forwarded by the channel. On the other hand, when an agent sends a message
with the request performative, it signals its intent to send messages to the channel. The
channel will then handle the transmission of these messages to any subscribed agents over
the selected protocol [93].
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The channel is capable of transforming incoming messages before forwarding them.
Supported transformation mechanisms include:

• REGEX: Extracts values based on patterns.

• JSON: Extracts values from JSON.

• XML: Extracts values from XML.

This mechanism allows messages to be converted into the required format before being
forwarded to the appropriate subscribers.

1 if self. input . startswith ("regex("):
2 reg = self.input [6: -1]
3 self. input_re = re. compile (reg)
4 self.map = self. map_re
5 elif self.input . startswith ("json("):
6 self. input_json = self.input [5: -1]
7 self.kb.query(" use_module ( library (http/json))")
8 cp = self. input_json
9 replaces = {}

10 for var in self. var_re . findall (self. input_json ):
11 rpl = self. REPL_STR % var
12 replaces [rpl [1: -1]] = var
13 cp = cp. replace (var , rpl)
14 query = " APIRES = ok , open_string ( ’%s’, S ), json_read_dict ( S, X

). " % cp
15 res = self.kb.query(query)
16 prolog_json = res [0]["X"]
17 for k, v in replaces .items ():
18 prolog_json = prolog_json . replace (k, "X" + v[1:])
19

20 self. input_json = prolog_json
21

22 self.map = self. map_json
23 elif self.input . startswith ("xml("):
24 self. input_xml = self.input [4: -1]
25 cp = self. input_xml
26 replaces = {}
27 for var in self. var_re . findall (self. input_xml ):
28 rpl = self. REPL_STR % var
29 replaces [rpl [1: -1]] = var
30 cp = cp. replace (var , rpl)
31

32 for k, v in replaces .items ():
33 input_xml = cp. replace (k, "X" + v[1:])
34

35 input_xml = xmltodict .parse( input_xml )
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36 self. input_xml = str( input_xml ). replace (" ", ""). replace ("’", "").
replace ("@", "")

37

38 self.map = self. map_xml

Listing 5.38: Input to output transformation mechanism

The channel dynamically manages network sockets, determining available ports and
assigning them based on the required protocol. The following method ensures that a free
port is identified before initiating a server:

1 def get_free_port (self , protocol : str) -> int:
2 if protocol == "tcp":
3 sock = socket . socket ( socket .AF_INET , socket . SOCK_STREAM )
4 else:
5 sock = socket . socket (type= socket . SOCK_DGRAM )
6 port = self. min_port
7 while port <= self. max_port :
8 try:
9 sock.bind (("", port))

10 sock.close ()
11 return port
12 except OSError :
13 port += 1
14 raise IOError ("No free ports in range %d - %d" % (self.min_port ,

self. max_port ))

Listing 5.39: Dynamic port allocation

A new UDP or TCP server is instantiated based on the specified protocol. Agents that
subscribe or attach are stored in internal data structures for efficient message forwarding.
When an agent attaches and sends messages to the channel, the AgentMessageListening
behavior ensures the message reaches all subscribed agents.

1 class AgentMessageListening ( CyclicBehaviour ):
2

3 async def run(self) -> None:
4 def iter_clients (srv):
5 if self.agent. protocol == "udp":
6 yield srv
7 else:
8 try:
9 c, a = srv.sock. accept ()

10 is_udp = True if self. agent. protocol == "udp" else
False

11 client = nclib. Netcat (sock=c, server =a, udp= is_udp )
12 yield client
13 for client in srv:
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14 yield client
15 except Exception as e:
16 if str(e) != "timed out":
17 logger .error(f"Error accepting client : {e}")
18 return
19

20 if self.agent. write_servers :
21 for srv in self.agent. write_servers :
22 srv.sock. settimeout (0.1)
23 for client in iter_clients (srv):
24 # TODO should put in a method instead
25 if self.agent. protocol == "udp":
26 result = None
27 try:
28 result , _ = client .sock. recvfrom (1024)
29 except Exception as e:
30 logger .error(f"Error receiving from client :

{e}")
31 pass
32 else:
33 result = client . recv_until (self.agent.delimiter ,

timeout =0.1)
34 logger .info(f" Received result : { result }")
35 if result :
36 logger .info(f" Mapping result : { result }")
37 msg = self.agent.map( result . decode ())
38 print (" msasdg ", result . decode ())
39 logger .info(f" Sending msg: {msg}")
40

41 self.agent. send_to_subscribed_read_agents (msg.
encode ())

Listing 5.40: Channel SPADE behavior used for
incoming messages handling

5.2.4 Environment

Environment is similar to a channel in the sense that it proxies messages between agents
and other holon environments. Each holon can have one input and one output environ-
ment. Other entities can either listen to messages or send messages to both input and
output environments. While the channel mainly facilitates direct communication between
agents, the environment plays a broader role by structuring the input and output message
flow within a holon-based system [31].

The APiEnvironment agent acts as a communication hub between agents and a holon,
managing both input and output message flows. It extends the APiBaseChannel and
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provides structured communication using different protocols. Unlike the channel, which
primarily facilitates direct message exchange between agents, the environment plays a
broader role by handling structured input and output streams for a MAS.

The environment supports both TCP and UDP protocols for incoming and outgoing
messages, dynamically setting up dedicated servers for each communication type. Agents
can either subscribe to listen to messages sent through the environment or attach them-
selves to send messages.

The environment dynamically provisions network sockets for its subscribers and at-
tached agents. The following method is responsible for managing agent communication
by retrieving a dedicated subscription server based on whether it is handling input or
output:

1 def get_read_server (self , env_type : str , protocol : str) -> tuple [str ,
str , int , str ]:

2 instance = (
3 self. input_subscribe_socket_server
4 if env_type == "input"
5 else self. output_subscribe_socket_server
6 )
7

8 srv = instance [" server "]
9 ip = instance ["ip"]

10 port = instance ["port"]
11 protocol = instance [" protocol "]
12

13 return srv , ip , port , protocol

Listing 5.41: Retrieving a network socket given incoming
request

The environment also distinguishes between agents that only listen and those that
send data. The following function ensures messages are correctly forwarded to all relevant
subscribers based on whether they are listening for input or output:

1 def send_to_subscribed_read_agents_and_holons (self , env_type : str , msg:
bytes) -> None:

2 socket_clients = (
3 self. socket_clients [" input_subscribe_socket_clients "]
4 if env_type == "input"
5 else self. socket_clients [" output_subscribe_socket_clients "]
6 )
7 s_server = (
8 self. input_subscribe_socket_server
9 if env_type == "input"

10 else self. output_subscribe_socket_server
11 )
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12 protocol = self. input_protocol if env_type == "input" else self.
output_protocol

13

14 if protocol == "udp":
15 for client in socket_clients :
16 s_server [" server "]. respond (msg , client )
17 else:
18 closed_clients = []
19 for idx , client in enumerate ( socket_clients ):
20 try:
21 client . sendline (msg)
22 except Exception as ex:
23 logger .info("Run into error sending a msg over socket ",

ex)
24 closed_clients . append (idx)

Listing 5.42: Forwarding messages to subscribers

Additionally, the APiEnvironment class instance features SPADE behaviors, including
a SubscriptionRequest behavior for managing agent subscriptions and a HolonMessageListening
behavior for relaying received messages to the appropriate recipients. These behaviors en-
sure that message flow is handled asynchronously and efficiently [70].

The SubscriptionRequest behavior is responsible for handling agent or holon re-
quests to listen to messages or send messages to the environment. When an agent or
a holon sends a subscription request, the behavior verifies the request and assigns the
appropriate input or output subscription. It determines whether the agent wants to listen
to incoming messages or transmit messages into the environment. If the verification suc-
ceeds, the environment responds with the relevant communication parameters, such as IP
address, port, and protocol type, ensuring the agent is properly registered for interaction.
This mechanism provides secure and structured access control over message exchange
within the environment.

The following code snippet demonstrates how the SubscriptionRequest behavior
processes agent requests:

1 class SubscriptionRequest ( CyclicBehaviour ):
2

3 async def run(self):
4 msg = await self. receive ( timeout =0.1)
5 if msg:
6 if self.agent. verify (msg):
7 logger .debug("( Subscribe ) Message verified , processing

...")
8 metadata = deepcopy (self.agent. agree_message_template )
9 metadata ["in -reply -to"] = msg. metadata ["reply -with"]

10 # subscribing to environment input
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11 if msg. metadata [" performative "] == " subscribe_to_input ":
12 metadata ["agent"] = " ENV_INPUT "
13 metadata ["type"] = "input"
14 _, ip , port , protocol = self.agent. get_read_server (
15 "input", self.agent. input_protocol
16 )
17 logger .info("ADDED input subscribe server ", ip , port

)
18 # subscribing to environment output
19 elif msg. metadata [" performative "] == "

subscribe_to_output ":
20 metadata ["agent"] = " ENV_OUTPUT "
21 metadata ["type"] = "input"
22 _, ip , port , protocol = self.agent. get_read_server (
23 " output ", self.agent. output_protocol
24 )
25 logger .info("ADDED output subscribe server ", ip ,

port)
26 # attaching to environment output
27 elif msg. metadata [" performative "] == " request_to_input ":
28 metadata ["agent"] = " ENV_INPUT "
29 metadata ["type"] = " output "
30 _, ip , port , protocol = self.agent. get_write_server (
31 "input", self.agent. input_protocol
32 )
33 logger .info("ADDED input attach server ", ip , port)
34 elif msg. metadata [" performative "] == " request_to_output "

:
35 metadata ["agent"] = " ENV_OUTPUT "
36 metadata ["type"] = " output "
37 _, ip , port , protocol = self.agent. get_write_server (
38 " output ", self.agent. output_protocol
39 )
40 logger .info("ADDED output attach server ", ip , port)
41 else:
42 logger .debug(" Unknown message ")
43 metadata = self.agent. refuse_message_template
44 metadata ["in -reply -to"] = msg. metadata ["reply -with"]
45 metadata [" reason "] = "unknown - message "
46 await self.agent. schedule_message (str(msg. sender ),

metadata = metadata )
47

48 if msg. metadata .get(" external ", "") == "True":
49 metadata ["agent"] = self.agent. holon_name
50

51 metadata [" server "] = ip
52 metadata ["port"] = port
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53 metadata [" protocol "] = protocol
54 await self.agent. schedule_message (str(msg. sender ),

metadata = metadata )
55 await asyncio .sleep (0.1)

Listing 5.43: Channel SPADE behavior used for
incoming messages handling

5.2.5 Agent wrapper

The agent wrapper is a specialized process responsible for bridging the communication
gap between an actual agent and the orchestration platform. It exchanges messages
with holon over XMPP to receive or report status changes and to request the addresses
of other entities (channels and environments). Simultaneously, it uses TCP and UDP
to transmit messages between environments and channels, while enabling communication
with the actual agent over various protocols, including Netcat, WS, HTTP, STDIN, and the
filesystem. Agent communication defines input and output separately, allowing flexibility
when the input and output protocols differ [93].

This concept of a wrapper arises when the user already has a previously developed
agent that runs through UNIX [29], Docker [110], or Kubernetes [18]. The wrapper stands
in front of this existing software i.e. agent, capturing inputs from the MAS and forwarding
them to the agent, while also capturing the agent’s outputs and sending them back out
to other participants as needed. Below is a code snippet (from the RequestAdresses
behavior) illustrating how the wrapper queries holon for the specific addresses of channels
or environments:

1 class RequestAdresses ( OneShotBehaviour ):
2

3 async def run(self) -> None:
4 # waiting for address book containing input channels from holon
5 logger .debug(f" Inputs : {self.agent. input_channel_query_buffer }")
6 for inp in self.agent. input_channel_query_buffer :
7 metadata = self.agent. query_msg_template
8 metadata ["reply -with"] = str(uuid4 ().hex)
9 metadata [" channel "] = inp

10 await self.agent. schedule_message (self.agent.holon , metadata
= metadata )

11

12 logger .debug(f" Outputs : {self.agent. output_channel_query_buffer }
")

13 for out in self.agent. output_channel_query_buffer :
14 logger .debug(f" Looking up channel {out} in addressbook ")
15 # in case we retrieved the channel from input channels

address book batch
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16 try:
17 channel = self.agent. address_book [out]
18 logger .debug(f"Got channel {out} address { channel }")
19 await asyncio .sleep (0.1)
20 except KeyError :
21 logger .debug(f"Could not find channel {out} in address

book , querying ")
22 metadata = self.agent. query_msg_template
23 metadata ["reply -with"] = str(uuid4 ().hex)
24 metadata [" channel "] = out
25 await self.agent. schedule_message (self.agent.holon ,

metadata = metadata )
26

27 if (
28 len(self.agent. input_env_query_buffer ) > 0
29 or len(self.agent. output_env_query_buffer ) > 0
30 ):
31 metadata = self.agent. query_msg_template
32 metadata ["reply -with"] = str(uuid4 ().hex)
33 metadata [" channel "] = " ENVIRONMENT "
34 await self.agent. schedule_message (self.agent.holon , metadata

= metadata )

Listing 5.44: Agent SPADE behavior used for requesting
addresses from holon

inp references a channel name or environment that was specified in the agent’s com-
munication flow definitions. When holon replies, the agent requests a connection with the
channel or environment through XMPP. The channel then establishes either a TCP or
UDP connection, depending on what was requested. These connections allow the wrapper
to facilitate communication between the agent and the MAS. The same pattern applies
when it needs the environment’s address, allowing the agent wrapper to treat environment
interactions just like a specialized channel.

Once the wrapper establishes connections, it distinguishes between channels where it
sends messages and those where it subscribes to receive messages. For channels where
the agent sends messages, it applies an attach behavior, ensuring data is forwarded cor-
rectly. On the other hand, for channels where the agent listens for incoming messages,
it subscribes to them to process received data. A snippet from the code shows how the
wrapper classifies channels in the subscribe_to_channel method:

1 def subscribe_to_channel (self , channel : str , channel_type : str) -> None
:

2 # TODO: Implement channel subscription (sender , receiver )
3 # Channel types:
4 # STDIN -> reads input from stdin
5 # STDOUT / STDERR -> writes output to STDIN/ STDERR
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6 # <name > -> gets instructions from channel on how
7 # to connect (via Netcat )
8 if channel_type == "input":
9 if channel == " STDOUT ":

10 err = "Input cannot be STDOUT "
11 raise APiChannelDefinitionError (err)
12 elif channel == " STDERR ":
13 err = "Input cannot be STDERR "
14 raise APiChannelDefinitionError (err)
15 elif channel == "STDIN":
16 self. start_shell_client ( prompt =True , await_stdin =True)
17 elif channel == " ENV_INPUT ":
18 self. input_env_query_buffer . append ( channel )
19 else:
20 self. input_channel_query_buffer . append ( channel )
21 elif channel_type == " output ":
22 if channel == " STDOUT ":
23 self. start_shell_client ( print_stdout =True)
24 elif channel == " STDERR ":
25 self. start_shell_client ( print_stderr =False)
26 elif channel == "STDIN":
27 err = " Output cannot be STDIN"
28 raise APiChannelDefinitionError (err)
29 elif channel == " ENV_OUTPUT ":
30 self. output_env_query_buffer . append ( channel )
31 else:
32 self. output_channel_query_buffer . append ( channel )

Listing 5.45: Subscribe to channel

The agent can initiate message sending based on its defined logic either proactively or
in response to received inputs. It can also wait for messages from the environment, another
channel, or be controlled via STDIN, where a user or script feeds commands directly. This
flexibility arises because the agent wrapper sets up multiple avenues for data flow. On
the output side, for instance, when the agent produces data as part of its execution, it
forwards the output to a configured channel. Below is a excerpt illustrating how output
is handled when the agent sends data to a channel:

1 async def output_callback (self , data: bytes) -> None:
2 self. shell_buffer . append (data)
3 logger .info(f"About to send {data. encode ()} to attached channels ")
4 for channel , srv in self. output_channel_servers .items ():
5 logger .info(f" Sending {data. encode ()} to { channel }...")
6 is_udp = srv[" protocol "] == "udp"
7 sent = False
8 srv[" socket "] = nclib. Netcat (( srv[" server "], srv["port"]), udp=

is_udp )
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9 while not sent:
10 try:
11 srv[" socket "]. sendline (data. encode ())
12 sent = True
13 logger .info(f"Done sending to channel { channel }")
14 except ( BrokenPipeError , ConnectionResetError ):
15 logger .error(f"Error sending {data} ( BROKEN PIPE)")
16 logger .info(" Attempting to reconnect ")
17 srv[" socket "] = nclib. Netcat (( srv[" server "], srv["port"

]), udp= is_udp )
18 if data == self. output_delimiter : # TODO: Verify this
19 self. service_quit ("End of output ")

Listing 5.46: Agent sending messages to attached
channels

In this snippet, output_callback is called whenever the agent generates data for
external transmission. The wrapper receives this data and iterates over all configured
output channels. Each channel is associated with a TCP or UDP socket, and the wrapper
sends the outgoing message. This ensures reliable transmission of the agent’s outputs.
When the agent receives incoming messages from the environment, a channel, or STDIN,
the wrapper directs them into the agent’s input logic for processing.

The agent wrapper’s primary responsibility is to launch the actual agent process and
bridge all communication contracts between that agent and the rest of the MAS. It
inspects an agent descriptor file (with .ad extension) to determine how to start the un-
derlying agent. Agents must be started by the orchestration platform, and there is no
support for interacting with agents that are already running. The excerpt below shows
part of the _load method, where the wrapper reads the descriptor and constructs the
startup command accordingly:

1 def _load(self , fh: io. TextIOWrapper ) -> None:
2 ...
3 if self.type == "unix":
4 self.cmd = self. descriptor ["agent"]["start"]
5 elif self.type == " docker ":
6 name = self. descriptor ["agent"]["name"]
7 cmd = self. descriptor ["agent"]["start"]
8

9 self.cmd = f" docker run -a stdin -a stdout -i -t {name} {cmd}"
10 elif self.type == " kubernetes ":
11 name = self. descriptor ["agent"]["name"]
12 cmd = self. descriptor ["agent"]["start"]
13

14 self.cmd = (
15 f" kubectl run {name} --rm -it --restart =Never --image ={ name}

--command -- {cmd}"
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16 )
17 ...

Listing 5.47: Load agent definition and start an agent

When the descriptor indicates "UNIX", the wrapper’s self.cmd just becomes whatever
local command the user has specified in the .ad file. If it says "docker", the wrapper
constructs a Docker command, binding standard input and output so it can capture the
container’s streams. For "kubernetes", it similarly forms a kubectl run command [110,
18, 29].

Once the agent is launched, the wrapper processes various input and output formats,
including HTTP, WSs, Netcat, STDIN, and local file. For each combination of input and
output, there is a specialized function (or set of functions) that ensures data conversion
appropriately. For instance, if an agent wrapper is configured to write data to an HTTP
endpoint of an agent but expects a response through a Netcat socket, the wrapper refer-
ences the corresponding entries in process_descriptor to manage the communication
flow:

1 elif self. input_type [:4] == "HTTP" and self. output_type [:6] == " NETCAT ":
2 url = http_re . findall (self. input_type )[0]
3 self. http_url = url
4 host , port , udp = netcat_re . findall (self. output_type )[0]
5 self. nc_host = host
6 self. nc_port = int(port)
7 self. nc_udp = udp != ""
8 self.input = self. input_http
9

10 self. httpnc_thread = Thread ( target = asyncio .run , args =( self.
input_httpnc_run (self.cmd) ,))

11 self. httpncrec_thread = Thread (
12 target =self.read_nc , args =( self.nc_host , self.nc_port , self.

nc_udp )
13 )

Listing 5.48: Configuring agent wrapper input and
output communication

In this snippet, the wrapper checks if the agent is configured to receive inputs via
HTTP and send outputs through a Netcat socket. It extracts the HTTP URL from
self.input_type and parses the Netcat host, port, and UDP flag from self.output_type.
The wrapper then sets up self.input_http as the input handler and initializes two
threads: one (self.httpnc_thread) to process incoming HTTP data asynchronously and
another (self.httpncrec_thread) to handle reading responses from the Netcat socket.
This setup ensures that data received via HTTP is processed and that responses are
transmitted back through Netcat.
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By maintaining this input-to-output mapping in a single place, the agent wrapper
ensures that developers can plug in an existing command-line or containerized application,
specify how it should receive inputs (HTTP, file, STDIN, etc.) and where it should send
its outputs (WS, Netcat, etc.), and have the wrapper seamlessly establish and route those
connections. This makes it possible to integrate a wide variety of software within the
MAS, whether it is a simple UNIX process, a Docker container, or a Kubernetes pod,
without modifying the underlying application code to communicate over HTTP, WSs, or
other protocol [110, 18, 29].

Once the agent wrapper finishes relaying data or encounters an issue, it notifies holon
of the outcome. The agent descriptor file (.ad) may include conditions for detecting
completion: for instance, a certain end delimiter in the agent’s output, or a specific line
of text signaling termination. The wrapper continuously monitors these conditions and,
when one is met, it executes its shutdown sequence. Below is an excerpt of code in which
the wrapper handles completion and sends a finished event to holon:

1 def service_quit (self , msg=""):
2 self.say(msg)
3 self. input_ended = True
4

5 async def service_quit_run (self) -> None:
6 while not self. input_ended :
7 await asyncio .sleep (0.1)
8

9 ...
10

11 metadata = deepcopy (self. inform_msg_template )
12 metadata ["reply -with"] = str(uuid4 ().hex)
13 metadata [" status "] = " finished "
14 metadata ["error - message "] = "null"
15 await self. schedule_message (self.holon , metadata = metadata )

Listing 5.49: Agent wrapper signaling completion of its
execution

In this snippet, service_quit sets a flag indicating that no more data is expected,
allowing the wrapper to terminate active threads. The service_quit_run coroutine
then gathers final status information and sends a finishing message to holon. If an
error occurred (for example, a process crash or broken socket), the wrapper replaces
"error-message":"null" with a diagnostic string before notifying holon. By monit-
oring both the agent’s inputs and outputs, the wrapper can reliably update holon on
whether the agent successfully met its completion condition or encountered a failure part-
way through.

Figure 5.4 illustrates the communication flow within an agent, detailing its interactions
with the holon, channels, and environments. Once a communication channel is set up,
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the agent wrapper is initialized upon request from the holon. When the agent wrapper is
ready, it notifies the holon via XMPP.

Subsequently, the agent wrapper requests the address of the communication channel or
environment it intends to interact with, to which the holon responds. The agent wrapper
then initiates communication with the corresponding channel through XMPP, prompting
the channel to establish a connection via either TCP or UDP.

In this scenario, the channel first contacts the agent wrapper with an input message.
Upon receiving the input, the agent wrapper forwards it to the agent through the ap-
propriate communication channel. The agent then processes the input, and once it is
ready to respond, the agent wrapper receives the output via the output channel. This
setup allows for different protocols to be used for agent input and output, but it can
make handling more complex, especially when the communication protocol is designed
to be synchronous, such as HTTP. Depending on the communication flow specification,
the agent wrapper may forward the output to other channels or environments as needed.
Finally, once the agent completes its processing, it acknowledges completion to the holon
via XMPP.

Figure 5.4 presents a sequence diagram illustrating agent communication with other
entities within the MAS.

120



Chapter 5. Implementation 5.2. Orchestration platform

Figure 5.4: Agent communication with other entities
within MAS

5.2.5.1 Agent definition

Agent definitions are written in YAML and define how to interact with an agent. These
specifications are consumed by agent wrapper to configure the socket, which serves as the
communication bridge between the platform and the agent.

Each agent definition is stored in a file with the .ad extension. The filename must
exactly match the agent’s name to ensure consistency with the name used in the commu-
nication flow specification. This consistency is essential for the orchestration platform to
correctly identify and connect with the agent.

When the orchestration platform processes an orchestration specification and encoun-
ters an agent named client_agent, it searches for a corresponding definition file named
client_agent.ad. If the file is missing or misnamed, the platform will fail to establish

121



Chapter 5. Implementation 5.2. Orchestration platform

communication with the agent, potentially causing orchestration errors.
The agent definition consists of the following properties:

• name: The unique identifier for the agent, ensuring it aligns with the name used in
the agents’ orchestration specification.

• description: A free-text field describing the purpose and functionality of the agent.

• start: Command to execute in order to start the agent.

• type: Indicates the startup mode of the agent. Supported values are:

– UNIX: The agent runs as a UNIX terminal process [29].

– DOCKER: The agent is started as a Docker container [110].

– Kubernetes: The agent is started as a Kubernetes container [18].

• input: Defines how the agent receives data and the characteristics of the input.

– type: Specifies the communication protocol used to send data to the agent.
Available values:

∗ STDIN: Data is provided through standard input.
∗ FILE: Data is read from a file.
∗ HTTP: Data is received via an HTTP request.
∗ WS: Data is received over a WS connection.
∗ NETCAT: Data is streamed using Netcat.

– data-type: Defines whether the input consists of a single value or a continuous
stream. Available values:

∗ STREAM: The input arrives as a continuous stream of data.
∗ ONEVALUE: The input is a single discrete value.

– fmt: Specifies the format of incoming data. This is especially relevant when
data arrives in chunks, as the received chunk may not represent a complete
value.

– cutoff: Determines how the agent identifies separate data chunks before pro-
cessing the message. Available values:

∗ DELIMITER: A predefined character or sequence separates chunks.
∗ TIME: Data is processed at time-based intervals.
∗ SIZE: Data is processed in fixed-size chunks.
∗ REGEX: A REGEX pattern is used to detect chunk boundaries.
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– end: Relevant for streaming input, this property defines when a message is
considered complete.

– value-type: Specifies the data type of the incoming value. Available values:

∗ string: The input is a text-based value.
∗ binary: The input consists of binary data.

• output: Defines how the agent sends data, with the same configuration options as
input.

As shown in the above description, the agent definition specifies configurations for
input and output separately. This separation may not be necessary for synchronous,
request-response communication protocols such as HTTP. However, the rationale behind
defining them separately is twofold: it allows for different communication protocols to be
used for input and output, and it supports protocols that are not based on a request-
response model, which require distinct interfaces for input and output communication.

The following are two examples of agent definitions: one that communicates via HTTP
with a single value, and another that communicates via WS using streaming.

1 agent:
2 name: http_onevalue_agent
3 description : >
4 An agent that receives a single value via HTTP
5 and processes it as a one -time request .
6 type: unix
7 start: python3 -m http_server
8 input :
9 type: HTTP http :// localhost :5000/ input

10 data -type: ONEVALUE
11 value -type: STRING
12 output :
13 type: HTTP http :// localhost :5000/ output
14 data -type: ONEVALUE
15 value -type: STRING

Listing 5.50: HTTP-based agent

1 agent:
2 name: stream_ws_agent
3 description : >
4 An agent that streams data via WebSocket .
5 It continuously receives and sends data.
6 type: unix
7 start: python3 -m ws_server
8 input :
9 type: WS ws :// localhost :8080
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10 data -type: STREAM
11 fmt: { "data": DATA }
12 cutoff : DELIMITER \n
13 end: <!eof!>
14 value -type: STRING
15 output :
16 type: WS ws :// localhost :8090
17 data -type: STREAM
18 fmt: { "data": DATA }
19 cutoff : DELIMITER \n
20 end: <!eof!>
21 value -type: STRING

Listing 5.51: WS-based agent

5.3 Tutorial

The following is a high-level, step-by-step guide for migrating an existing agentic system
to the artifact. These same steps also apply when developing a new system intended
for use with the artifact. This guide is intended to help users better understand the
migration requirements and the necessary steps involved. At a high level, the process
consists of writing specifications and adjusting the agents’ communication contracts to
ensure seamless integration.

To integrate the artifact into this system, the steps would be as follows:

1. Adjust agent communication protocols and contracts

• If necessary, modify the communication protocols and agent contracts to align
with the supported protocols of the orchestration platform.

2. Ensure clear and atomic agent responsibilities

• Agents should have well-defined responsibilities and be implemented atomically
to promote modularity and maintainability. This helps ensure that each agent
remains simple, focused, and predictable in its behaviour.

3. Write agent definitions

• Define specifications outlining how the orchestration platform should interact
with each individual agent, ensuring proper communication and coordination.

4. Define required elements for the agents’ orchestration specification
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• Identify the required elements such as channels, environments, agents, and
dependencies that are used to specify communication flows within the agents’
orchestration specification.

5. Write agents’ orchestration specifications

• Define the agents, channels, environments, holons, and their dependencies
within the agents’ orchestration specification.

6. Startup the agent orchestration system

• Launch the orchestration platform to manage communication and coordination
between agents through command-line.

Additional materials, examples, and instructions are available in the public GitHub
repository [78]. After the orchestration platform starts successfully, an output similar to
that shown in figure 5.5 should appear.

Figure 5.5: Output indicating successful startup of the
orchestration platform
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Demonstration

In this chapter, the focus is on validating and testing the integration of the artifact within
systems. Specifically, four use cases from the O HAI 4 Games project are explored. The
analysis examines ease of integration, scalability, modularity, and other factors, highlight-
ing both strengths and areas for improvement. Three of the use cases involve integrating
the artifact into an existing system that has already been developed, showcasing the pro-
cess of converting an existing system. However, one use case takes a different approach,
demonstrating the development of a new system with the artifact.

6.1 MMORPGs

One of the use cases where the artifact has been tested is in game engine layers de-
signed to support Massively Multiplayer Online (MMO) Interactive Fiction (IF) games.
This implementation builds upon Inform 7 [87], a declarative programming language used
to develop text-based narrative experiences where players interact with the game world
through textual commands. Inform 7 typically structures its game environments as in-
terconnected rooms, allowing players to navigate and engage with in-game objects, NPC,
and other interactive elements. The challenge addressed in this work is extending Inform
7’s single-player narrative-driven gameplay into a multi-player experience where multiple
players can coexist and interact in a synchronized virtual world [97].

To achieve this, MAS approach is employed, integrating an additional game engine
layer that facilitates player interaction and world synchronization over a network. Com-
munication between players is enabled through the XMPP [93], which allows real-time
text-based interactions within the game. This is implemented using the SPADE frame-
work, which provides an agent-based infrastructure for managing communication between
players and synchronizing the game state [70]. Players can send messages to individu-
als or broadcast them to everyone in the same in-game location, mimicking real-world
conversations within a narrative environment. The system also notifies users when other
players enter their current room, maintaining a sense of presence and immersion. A Py-
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thon interface to the Glulxe IF [2] interpreter is used to process player input and track
room transitions, ensuring that the game world remains responsive to player actions. This
implementation showcases the potential for transforming traditional text-based IF games
into dynamic, multi-player experiences while preserving the core mechanics of interactive
storytelling [97].

6.1.1 Initial state

In the initial setup, a MAS has been implemented using the SPADE framework. This
system consists of a central agent, which acts as a server, and multiple client agents
that communicate with it. The primary role of the client agents is to notify the central
agent about updates, such as changes in their location or messages crafted by their users.

For client agents to exchange messages with one another, they must first subscribe
to the central agent. By subscribing, a client agent expresses its interest in receiving
messages that are relevant to its context, while also indicating that it will be sending out
its own messages based on actions it performs. When a client agent sends a message,
the central agent determines which subscribed agents should receive it and forwards the
message accordingly.

Developed on the SPADE framework, the system provides adequate coordination,
allowing agents to interact dynamically through a central agent. The architecture is
designed to be scalable and can theoretically support any number of agents.

6.1.2 Transformed state

In the transformed state, a central agent is responsible for consuming all activity mes-
sages from client agents. client agents, as before, continue to share their state changes
by publishing activities to activity channel. central agent listens to these messages
and processes them accordingly.

In this setup, communication occurs over TCP, ensuring that every message sent
by a client agent is reliably processed. central agent applies additional processing
to activity channel messages, distinguishing between interaction messages and loca-
tion changes. It then forwards these messages to two separate channels: messages and
location_changes. This allows client agents to selectively subscribe to the type of mes-
sages they are interested in (for example, a user may choose to listen only to interaction
messages while ignoring location changes).

Migrating from the initial state to the transformed state required several changes. The
initial implementation was built on the SPADE framework, necessitating efforts to replace
its communication layer and decouple both central and client agents from SPADE.
Instead, agents were restructured to communicate via WS protocol. Additionally, minor
adjustments were made to the business logic of both central and client agents to
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ensure proper message processing based on the designated channels (location_changes
or messages). The execution flow specifies that central agent starts up first, after which
the client agents start, to make sure no activity events are sent before. Below is agents’
orchestration specification for this use case:

1 // channels
2 channel activity
3

4 channel messages
5

6 channel location_changes
7

8 // agents
9 agent client_1 :

10 self -> activity
11 messages -> self
12

13 agent client_2 :
14 self -> activity
15 messages -> self
16

17 agent central :
18 activity -> self
19 self -> messages
20 self -> location_changes
21

22 // execution flows
23 start central client_1 | client_2

Listing 6.1: Agents’ orchestration specification for
MMORPG use case

The following is an agent definition for central and client agents, which differ only
in the host, port they connect to, script they run, name, and description:

1 agent:
2 name: central
3 description : >
4 Central agent used for communication in MMORPG IF.
5 type: unix
6 start: central .py
7 input:
8 type: NETCAT localhost :3000
9 data -type: STREAM

10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
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14 output :
15 type: NETCAT localhost :4000
16 data -type: STREAM
17 fmt: { "data":DATA }
18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING

Listing 6.2: central and client agent definition for
MMORPG use case

The figure below illustrates the MAS setup derived from the artifact.

Figure 6.1: Agent architecture for MMORPG use case

6.1.3 Pros and cons

Following is a list of pros and cons identified during the migration of the solution to the
artifact:

• Pros

– Supports high scalability, enabling seamless expansion of agent-based systems.

– Requires minimal changes to integrate with the artifact, reducing migration
overhead.

– Provides easier configuration for specifying event listeners, simplifying event-
driven workflows.
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– Allows agents to be integrated across different machines, whether local or dis-
tributed, making it particularly beneficial for MMO environments.

• Cons

– The existing communication protocol XMPP is not supported, necessitating
migration to a compatible alternative.

– Agents cannot easily subscribe to or modify communication channels at runtime,
making it difficult to adapt to dynamic messaging needs (for example, switch-
ing location which should then subscribe to the corresponding channel).

– Agents must be predefined in the communication flow specification, which pre-
vents the addition of new agents at runtime (e.g., new players joining).

6.2 Cognitive agents and gamification

The integration of cognitive agents and gamification into telemedicine presents a novel
approach to enhancing patient engagement and healthcare service delivery. At the core
of this innovation is Beautiful Artificial Intelligence Cognitive Agent (B.A.R.I.C.A), an
AI-driven system that utilizes NLP, ML, Belief-Desire-Intention (BDI) models, and auto-
mation to facilitate real-time interactions between patients and medical professionals.
By embedding Speech-to-Text (STT) and Text-to-Speech (TTS) capabilities, the sys-
tem enables seamless communication, making healthcare more accessible and interactive.
Additionally, gamification techniques are integrated to encourage adherence to medical
protocols, turning essential health-related tasks into engaging, reward-based experiences
[99, 95].

The system employs Holonic Multiagent Systems (HMASs) [25], where different mi-
croservices act as autonomous agents capable of intelligent decision-making and coordin-
ation. It supports multiple stakeholders, including patients, physicians, nurses, and spe-
cialists, who can access it via smart devices, PCs, or smart TVs. It is designed for chronic
disease management, emergency response assistance, virtual consultations, and preventive
healthcare education, with gamification elements such as progress tracking, achievement-
based rewards, and interactive avatars [99, 101].

6.2.1 Initial state

B.A.R.I.C.A system has been designed and implemented following a HMAS architecture.
This architectural choice was made because the agent is publicly exposed and may be
accessed by multiple external parties. Within the holon, several specialized agents collab-
orate to handle different roles efficiently.
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Concretely, the system consists of an agent that processes audio input by transcribing
it into text. Another agent applies intelligent business logic to interpret the transcribed
inquiry and interact with a knowledge database to generate an appropriate response.
Finally, a third agent converts the textual response back into audio output, ensuring a
seamless conversational experience.

Communication with the system can occur via either a Representational State Trans-
fer (REST) endpoint or WS. Given that B.A.R.I.C.A is designed for real-time commu-
nication, WS technology offers better performance for this use case. Additionally, since
communication between agents follows a sequential flow, a custom message-passing pro-
tocol has been implemented to optimize inter-agent interactions.

6.2.2 Transformed state

In the transformed state, the new implementation consists of four distinct agents: user,
transcriber, knowledge, and audio_generation. These agents communicate primarily
through dedicated UDP channels, however, in some cases, they rely on HTTP where the
loss of a packet is critical.

The user agent captures speech input and sends it via the audio_input channel.
transcriber agent listens to this channel, processes the incoming audio, and gener-
ates text transcriptions, which it then transmits through the transcription channel.
knowledge agent consumes transcriptions, processes the input, and generates text-based
responses. These responses are then sent to the response channel.

The audio generation agent listens to the response channel, converts textual responses
into audio, and transmits the generated speech via the audio_output channel. user agent
then listens to the audio_output channel to receive and play back the synthesized speech.

To support this transition, the communication contracts between agents were adjusted
to be more modular and atomic. Despite these changes, the core business logic remains
the same, as the fundamental flow of information is preserved. Most communication
happens over UDP, minor packet loss is tolerable in specific cases, making it a suitable
choice for lightweight, low-latency interactions.

Below is agents’ orchestration specification:

1 // channels
2 channel transcription
3

4 channel response
5

6 channel audio_input
7

8 channel audio_output
9

10 // agents
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11 agent transcriber :
12 audio_input *-> self
13 self *-> transcription
14

15 agent knowledge :
16 transcription *-> self
17 self -> response
18

19 agent audio_generation :
20 response -> self
21 self *-> audio_output
22

23 agent user:
24 self *-> audio_input
25 audio_output *-> self
26

27 // execution flows
28 start transcriber | knowledge | audio_generation | user

Listing 6.3: Agents’ orchestration specification for
cognitive agents and gamification use case

The following is an agent definition for transcriber agent, which would be very
similar to user and audio_generation agents, except for differences in name, description,
Netcat ports, and start command:

1 agent:
2 name: transcriber
3 description : >
4 Agent responsible for transcription .
5 type: unix
6 start: transcriber .py
7 input:
8 type: NETCAT localhost :3002: udp
9 data -type: STREAM

10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
14 output :
15 type: NETCAT localhost :4002: udp
16 data -type: STREAM
17 fmt: { "data":DATA }
18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING
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Listing 6.4: transcriber agent definition for cognitive
agents and gamification use case

Below is an agent definition for knowledge agent:
1 agent:
2 name: knowledge
3 description : >
4 Agent responsible for generating response to user message .
5 type: unix
6 start: knowledge_server .py
7 input:
8 type: HTTP http :// localhost :2709/
9 data -type: STREAM

10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
14 output :
15 type: HTTP http :// localhost :2709/ response
16 data -type: STREAM
17 fmt: { "data":DATA }
18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING

Listing 6.5: knowledge agent definition for cognitive
agents and gamification use case
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The figure below illustrates the MAS setup derived from the artifact.

Figure 6.2: Agent architecture for cognitive agents and
gamification use case

6.2.3 Pros and cons

Below are the pros and cons of the transformed state.

• Pros

– Supports UDP for efficient, low-latency streaming communication.

– Seamless integration with intelligent agents, particularly those accessible via
APIs.

– Requires minimal modifications to existing business logic, ensuring an easy
transition.

• Cons

– The necessity of adding an additional agent, user agent, arises from the concept
of having channels for communication between the user graphical interface and
other components.

– Using the HTTP protocol for agent communication required separate endpoints
for input and output, which is redundant given that HTTP inherently follows
a request-response communication model.
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6.3 AVs – serious gaming

The use case of Digital Twins (DTs) in AVs is primarily designed to enhance the safety,
performance, and adaptability of self-driving systems. A DT [52] is a real-time vir-
tual representation of an AV, integrating live sensor data, simulations, and ML-based
decision-making. Unlike traditional simulations, DTs continuously mirror the real-world
environment and vehicle state, providing a dynamic and accurate reflection of physical
conditions. In autonomous driving, this concept is leveraged to predict vehicle behavior,
optimize traffic management, and enhance cybersecurity by detecting anomalies before
they cause disruptions. Additionally, DTs assist in propulsion management, battery op-
timization, and accident prevention by running virtual test scenarios and refining vehicle
responses in real-time [98].

To enable real-time monitoring, intervention, and adaptability in AVs, the DT acts
as a high-fidelity virtual counterpart of the physical system. It continuously synchronizes
with real-world vehicle data, processing sensor inputs, actuator outputs, and decision-
making processes to mirror and predict behavior accurately. By structuring the DT as a
game actor, this approach allows for interaction within a simulated environment, enabling
developers to test AI-driven optimizations, run safety-critical scenarios, and refine vehicle
responses in a controlled yet realistic setting. This setup ensures parallel execution of
both the physical vehicle and its DT, allowing real-time feedback loops where insights
from the virtual model can immediately inform real-world operations [52, 98].

Moreover, this use case has been designed with the application of the artifact-based
framework from scratch, thus there was no need for migrating the code to a new infra-
structure.

6.3.1 Initial state

The solution has been designed with the artifact in mind from the outset, ensuring seam-
less integration and scalability. Each AV is conceptualized as a holon, a self-contained and
autonomous unit that can interact dynamically within a larger system. The holon is com-
posed of four distinct agents: sensor agent, external_service agent, actuator agent,
and inter_vehicle agent, each fulfilling a crucial role in the vehicle’s decision-making
and operational framework [98].

sensor agent represents a variety of onboard sensors responsible for detecting critical
parameters such as speed, braking force, environmental conditions, and other vehicle
dynamics. These sensors continuously capture and transmit real-time data to the DT,
enabling precise situational awareness [98].

external_service agent functions as an intermediary between the vehicle and glob-
ally accessible services, such as Global Positioning System (GPS), cloud-based mapping
systems, and traffic monitoring networks. This agent collects external data that is essen-
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tial for navigation, route optimization, and real-time traffic adaptation, ensuring that the
vehicle operates efficiently within its surroundings [98].

actuator agent is responsible for executing control commands based on the processed
data. It determines the appropriate energy distribution for propulsion, braking, and
steering, thereby optimizing vehicle performance and ensuring safe operations [98].

inter_vehicle agent is a dedicated component for analyzing and integrating data
received from other AVs. It processes shared motion and behavioral data, allowing
the vehicle to anticipate nearby movements, adapt to dynamic road conditions, and en-
hance cooperative driving strategies. By aggregating and interpreting this information,
the agent facilitates swarm intelligence, enabling real-time collaborative decision-making
among autonomous vehicles [98].

The sensor, inter_vehicle, and external_service agents communicate with the
actuator agent via the insights channel. To optimize data transmission, the system
leverages UDP and TCP protocols based on data priority:

• UDP is used for high-frequency, non-critical data from sensors and external services
(e.g., speed readings, GPS). This ensures minimal latency and real-time respons-
iveness.

• TCP handles critical information such as inter_vehicle communication and ac-
tuator commands, ensuring reliable, ordered, and lossless data delivery for safety-
sensitive operations.

The holon operates within a structured communication framework, with defined input
and output environments. The input environment gathers motion-related data from other
holons (i.e., other AVs within the MAS) allowing for coordinated traffic flow and predictive
driving. Conversely, the output environment enables the AV to communicate its own
motion intentions, ensuring that surrounding vehicles can anticipate and react to its
actions. This interconnected exchange of information fosters a decentralized, cooperative
driving ecosystem where vehicles dynamically adjust their behavior to enhance safety,
efficiency, and overall traffic management [98].

By structuring AVs as holons with dedicated processing agents and an optimized com-
munication protocol strategy, this approach not only enhances modularity and scalability
but also aligns with the DT paradigm, reinforcing the system’s ability to perform real-
time simulations, optimizations, and predictive analysis while maintaining low latency for
frequent updates and high reliability for critical information processing [98].

Below is the agents’ orchestration specification for a single AV holon:
1 // holons
2 import holonAV2
3

4 // environment
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5 environment .
6

7 // channels
8 channel insights
9

10 // agents
11 agent inter_vehicle :
12 ENV_INPUT *-> self
13 self -> insights
14

15 agent sensor :
16 self *-> insights
17

18 agent external_service :
19 self *-> insights
20

21 agent actuator :
22 insights -> self
23 self -> ENV_OUTPUT
24

25 // execution flows
26 start inter_vehicle | sensor | external_service | actuator

Listing 6.6: Agents’ orchestration specification for AVs
– serious gaming use case

The following is an agent definition for sensor agent. However, inter_vehicle,
external_service, and actuator agents would follow the same structure, except for
differences in host, port, protocol, name, description, and run command values:

1 agent:
2 name: sensor
3 description : >
4 Agent responsible for collecting various analytical data of a vehicle

.
5 type: unix
6 start: sensor .py
7 input:
8 type: NETCAT localhost :3003: udp
9 data -type: STREAM

10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
14 output :
15 type: NETCAT localhost :4003: udp
16 data -type: STREAM
17 fmt: { "data":DATA }
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18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING

Listing 6.7: sensor agent definition for AVs – serious
gaming use case

The figure below illustrates the MAS setup derived from the artifact.

Figure 6.3: Agent architecture for AVs – serious gaming
use case

6.3.2 Pros and cons

Below are the pros and cons of the transformed state.

• Pros

– Provides efficient, low-latency streaming communication through UDP.

– Enables a holonic architecture, which is highly valuable for building clusters of
agents that communicate with one another.

– Facilitates the development of new systems that align with the artifact’s design
expectations.

• Cons
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– Communication between agents (via channels) is limited to TCP or UDP,
restricting protocol flexibility.

– Holonic environments can only be accessed by other holons initiated within the
orchestration platform, preventing interaction with external agents.

6.4 Game streaming system

Another use case developed as part of O HAI 4 Games is Lag but Good Game (laGGer),
a game streaming engine designed entirely using open-source technologies. The system
enables real-time game streaming over the cloud, removing the need for high-end hard-
ware on the client side. Unlike proprietary commercial platforms such as Google Sta-
dia [37] or Nvidia GeForce Now [63], laGGer emphasizes accessibility and flexibility by
leveraging open standards and microservice-based architectures. The core innovation is
its integration of MASs, which orchestrate multiple game instances and enable seamless
video and audio streaming. This design supports real-time simulations, interactive gam-
ing experiences, and collaborative virtual environments, making it a versatile tool beyond
entertainment, particularly for transport and mobility research [57].

To achieve this, laGGer utilizes a cloud-based infrastructure that allows multiple users
to interact with game environments remotely. It is designed to be highly scalable and ad-
aptable, supporting different transport and mobility research applications, such as traffic
simulations, AV testing, and public transportation modeling. The system enables real-
time data collection and analysis, providing valuable insights into user behavior and mo-
bility patterns. Additionally, its collaborative capabilities facilitate multi-player particip-
ation, making it useful for training scenarios and decision-making simulations in urban
planning [57].

6.4.1 Initial state

The laGGer system follows a MAS architecture, where key components operate as autonom-
ous agents that communicate asynchronously. game_streaming agent orchestrates the en-
tire system, managing game sessions and assigning game agents, which run inside Docker
containers to ensure isolation and scalability. Each game agent executes a specific game
environment and streams it to users via noVNC and X11 forwarding, allowing access
without requiring additional installations. videoconferencing agent facilitates real-time
communication using WebRTC, enabling users to interact within shared simulations [57].

While only game agents are containerized for modularity, the other agents (game_streaming
agent and videoconferencing agent) run as standalone processes, leveraging SPADE and
XMPP for efficient coordination. When a user initiates a session, game_streaming agent
assigns an available game agent, which reports status updates during streaming. This
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architecture allows laGGer to deliver a flexible, scalable game-streaming solution, sup-
porting transport and mobility research applications such as traffic modeling, AV testing,
and urban planning simulations [57].

6.4.2 Transformed state

In the transformed state, assumption is that each server or pool of players who either
play together or are in some way related forms a single holon. A holon consists of
multiple game_instance agents, each responsible for running a game in Docker, which
the user interacts with indirectly. When a user decides to play a game, they interact
with the user agent, which captures their actions and delivers the video feed produced
by video_conferencing agent. user agent sends messages to user_actions channel,
which game_orchestrator agent listens to for incoming events. When an event arrives,
game_orchestrator agent communicates with the appropriate game_instance agent via
game_actions channel. game_orchestrator agent keeps track of active game instances,
their states, and how they map to users. game_instance agent reports state changes and
game outputs through the game_events channel. orchestrator_agent listens to this
channel to determine whether a game session is still in progress or has been completed.

video_conferencing agent also listens to the game_events channel to process the
game instance’s output and convert it into a video feed. video_conferencing agent then
publishes this feed to the video_output channel, which user agent subscribes to. user
agent delivers the feed to the graphical interface, allowing the user to see the game’s
output. Communication between agents occurs over the UDP protocol, prioritizing low
latency over reliability since minor packet loss is acceptable in exchange for real-time
responsiveness. In this transformed state, there are four primary communication channels:
user_actions, game_events, video_output, and game_actions. Since multiple users
and game instances exist at any given time, agents may receive messages that are not
relevant to them. Each agent reads message metadata to filter out any that do not
pertain to its assigned task.

The majority of the agent codebases for each individual agent remained unchanged,
though some effort was required to update the communication contracts between them.
Additionally, a new agent, user agent, was introduced, which was not part of the initial
state but is now required to facilitate user interactions and manage video delivery.

Below is agents’ orchestration specification:

1

2 channel user_actions
3

4 channel game_actions
5

6 channel game_events
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7

8 channel video_output
9

10 // agents
11 agent game_orchestrator :
12 user_actions *-> self
13 game_events *-> self
14 self *-> game_actions
15

16 agent video_conferencing :
17 game_events *-> self
18 self *-> video_output
19

20 agent game_instance_1 :
21 user_actions *-> self
22 self *-> game_events
23

24 agent game_instance_2 :
25 user_actions *-> self
26 self *-> game_events
27

28 agent user_1 :
29 self *-> user_actions
30 video_output *-> self
31

32 agent user_2 :
33 self *-> user_actions
34 video_output *-> self
35

36 // execution flows
37 start game_instance_1 game_instance_2 video_conferencing

game_orchestrator user_1 user_2

Listing 6.8: Agents’ orchestration specification for game
streaming system use case

Following is an agent definition for game_instance agent:

1 agent:
2 name: game_instance
3 description : >
4 Agent responsible for orchestrating execution between users and game

instances .
5 type: docker
6 start: game_instance .py
7 input:
8 type: NETCAT localhost :3004: udp
9 data -type: STREAM
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10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
14 output :
15 type: NETCAT localhost :4004: udp
16 data -type: STREAM
17 fmt: { "data":DATA }
18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING

Listing 6.9: game_instance agent definition for game
streaming system use case

Below is the agent definition for game_orchestrator agent. A similar definition would
be used for other agents, differing only in the Netcat host, port, script, name, and de-
scription:

1 agent:
2 name: game_orchestrator
3 description : >
4 Agent responsible for orchestrating execution between users and game

instances .
5 type: unix
6 start: game_orchestrator .py
7 input:
8 type: NETCAT localhost :3005: udp
9 data -type: STREAM

10 fmt: { "data":DATA }
11 cutoff : DELIMITER NEWLINE
12 end: <!eof!>
13 value -type: STRING
14 output :
15 type: NETCAT localhost :4005: udp
16 data -type: STREAM
17 fmt: { "data":DATA }
18 cutoff : DELIMITER NEWLINE
19 end: <!eof!>
20 value -type: STRING

Listing 6.10: game_orchestrator agent definition for
game streaming system use case
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The figure below illustrates the MAS setup derived from the artifact.

Figure 6.4: Agent architecture for game streaming sys-
tem use case

6.4.3 Pros and cons

Below is a list of pros and cons identified during the migration process.

• Pros

– Supports UDP, enabling low-latency communication.

– Can scale to a high number of agents.

– Supports Docker for containerized deployment of agents.

• Cons

– All game_instance and user agents receive the same output, even if it is not
intended for them, requiring additional filtering logic.

– Dynamic agent creation is not possible as all agents must be predefined and
operational.

– Execution flows are primarily based on agent start and end events, with limited
support for other triggers such as occupancy and bandwidth, which would be
helpful for proper load balancing.
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– Agents must be started through the orchestration platform, which does not
allow connecting with already running agents.
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Evaluation

The artifact has been evaluated on its ability to ensure the programming language is
equipped with comprehensive features to manage the communication flows identified in
the previous phases of research, confirmed through semantic analysis, and further as-
sessed by the O HAI 4 Games project team and independent experts. The evaluation
process applies the Framework for Evaluation in Design Science research (FEDS) evalu-
ation framework, which is comprised of four steps: (1) Explicate the goals of the evalu-
ation, (2) Choose the evaluation strategy or strategies, (3) Determine the properties to
evaluate, and (4) Design the individual evaluation episode(s) [116].

7.1 Evaluation process

The following section provides a detailed explanation of each step within the FEDS frame-
work, highlighting how these steps are integrated into the design and execution of this
research [116].

7.1.1 Explicating the goals of the evaluation

The primary goal of the evaluation was to assess the software artifact’s ability to en-
sure that the programming language is equipped with comprehensive features to manage
communication flows, as identified in prior research phases. This has been confirmed
through semantic analysis and qualitatively assessed by members of the O HAI 4 Games
project team, as well as independent experts with extensive experience in cloud systems,
AI, and microservices architectures. The experts hold senior titles and have previously
contributed to the design and architecture of projects utilizing MAS architecture.

This evaluation measured how well the artifact integrates into existing software sys-
tems, supports modularity and reuse, meets specified requirements across four practical
use cases defined by a set of requirements and constraints reflecting real-world conditions,
and adheres to these standard programming language criteria.
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7.1.2 Choosing the evaluation strategy

Given that the artifact is intended as an extension or replacement for existing agents’ or-
chestration tools in MASs, the evaluation followed the Technical Risk & Efficacy strategy.
This strategy ensures thorough technical assessment through a combination of formative
and summative evaluations, confirming the artifact’s reliability and suitability in replacing
current systems [116].

7.1.2.1 Formative evaluation

Artificial (controlled environment) testing was initially performed in a controlled setting
using simulations to iteratively identify and resolve technical issues. Project team mem-
bers provided feedback through structured questionnaires and direct observations. This
feedback was qualitatively analyzed to uncover patterns and refine the artifact’s perform-
ance and reliability, ensuring its suitability for extending or replacing existing tools in
information systems [116].

7.1.2.2 Summative evaluation

Naturalistic (real-world environment) testing was conducted through practical implement-
ation in real-world scenarios to assess how well the artifact integrated into existing sys-
tems. Feedback from the project team and domain experts was gathered through ob-
servations, interviews, and surveys. The collected data was analyzed using qualitative
methods to identify trends in practical application, confirming the artifact’s efficacy and
suitability across real-world use cases [116].

7.1.3 Determining the properties to evaluate

The evaluation process focused on two main groups of properties: artifact quality char-
acteristics derived from the ISO/IEC 25002:2024 standard [84, 111] and programming
language criteria sourced from Programming Language Pragmatics [114].

7.1.3.1 Artifact quality

• Interoperability (sub-characteristic of Compatibility): Evaluates how well the ar-
tifact integrates into existing software systems, including data exchange protocols,
communication APIs, and ease of integration with external systems.

• Modularity and reusability (sub-characteristics of Maintainability): Assessed through
structural analysis, identifying modular design and ease of extending or reusing the
system’s functionality in other projects.
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• Usability: Evaluated based on appropriateness recognizability, learnability, operab-
ility, and user interface aesthetics to determine how intuitive and user-friendly the
artifact is.

• Performance efficiency: Assessed by examining efficient coding practices, minimizing
redundancy, and optimizing resource utilization.

• Functional suitability: Compared against specified requirements to gauge complete-
ness, correctness, and appropriateness for the intended purpose.

7.1.3.2 Standard programming language criteria [114]

• Readability: Evaluated by examining syntax clarity, consistency in naming conven-
tions, and overall code understandability.

• Writability: Assessed by how expressively the language enables programmers to
implement functionality, focusing on features that simplify coding.

• Reliability: Measured by error-handling capabilities, type safety, and mechanisms
for writing robust, error-free code.

7.1.4 Designing the individual evaluation episode

The evaluation episode is defined as follows:

1. Implementation: Implement the artifact in each of the assigned use cases, docu-
menting the process and challenges encountered.

2. Feedback Collection: Collect feedback through structured questionnaires and inter-
views, addressing specific characteristics being evaluated.

3. Analysis: Analyze the feedback qualitatively using thematic analysis [62] to identify
patterns, common issues, and strengths.

4. Reporting: Generate a report summarizing the feedback and offering recommenda-
tions for improvement.

7.2 Evaluators

The feedback was collected from three O HAI 4 Games project members and six inde-
pendent experts with extensive experience in building microservices and MAS.
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7.2.1 O HAI 4 Games project team members

The members of the O HAI 4 Games project team who evaluated the artifact were:

• Bogdan Okreša Ðurić is an AI expert currently teaching at the Faculty of Organiz-
ation and Informatics in Varaždin. Bogdan holds a PhD in Computer Science (CS)
and has made significant contributions to the agentic space through a variety of
publications.

• Igor Tomičić is a security expert who teaches at the Faculty of Organization and
Informatics in Varaždin. He holds a PhD in CS and serves as a lead auditor for ISO
27001 and 22301. Igor has made numerous contributions in the fields of security
and AI through conference talks, scientific publications, industry collaborations, and
participation in international research projects.

• Neven Vrček is a professor at the Faculty of Organization and Informatics. In the
past, he served as the Dean of the Faculty. His interests span across AVs, Internet
of Things (IoT), and AI.

7.2.2 Independent experts

The following is a list of independent experts who evaluated the artifact.

• Richard Abrich is a principal AI engineer with a PhD in CS. He previously co-
founded OpenAdaptAI, an agentic framework designed for controlling personal com-
puters. In the past, he has consulted with several AI focused companies, helping
them deliver end to end automated experiences.

• Matthias Bayer is a software engineer with a variety of experience working with San
Francisco-based startups in the AI and agent-driven space, including companies such
as GM Cruise, Labelbox, and Concierge. He has served as a founding member of
several teams, where he was responsible for designing and setting up the architecture
from scratch.

• Rio Kierkels is a cloud systems expert with a strong background in MLOps. He
has spent several years consulting with European companies to enhance the infra-
structure and security of large-scale systems. His work often focuses on designing
scalable architectures and implementing reliable deployment pipelines.

• Vineet Sinha holds a PhD in Computer Science from MIT. Over the years, he has
worked with large companies to drive automation and improve workflow efficiency.
He is best known for his role as Head of Strategic Innovation at Salesforce. Most
recently, he has been focused on building a startup in the AI space.
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• Peter Skvarenina is a ML graduate from The University of Texas at Austin and
is currently studying Generative Artificial Intelligence (Gen AI) and Robotics at
Stanford University. In the past, he has worked at several enterprise companies,
including JetBrains, Nokia, and D-iD.

• Michael van Elk currently serves as Head of AI at Tribe AI. In the past, he co-
founded a startup focused on data lineage. He has extensive experience building AI
solutions, leveraging both modern technologies such as Gen AI and more traditional
algorithmic approaches.

7.3 Questionnaire

The questionnaire includes all relevant questions, each accompanied by a rationale explain-
ing its purpose and the specific characteristics being evaluated. Questions are designed
to meet clearly defined objectives, ensuring alignment with the overall evaluation goals
and clarifying how the collected data will be used. To support a more structured and tar-
geted assessment, the questionnaire is divided into three semantically distinct components:
Agents’ orchestration specification, orchestration platform, and agent definition.

7.3.1 Agents’ orchestration specification

1. Question: Do you find the agents’ orchestration specification easy to write and
understand?
Rationale: Helps us understand whether writing a specification is intuitive and easy
to learn.
Characteristics: Usability, Readability, Writability

2. Question: Does reading a communication flow specification give you a clear under-
standing of which agents communicate and how?
Rationale: Determines whether the specification provides a clear, holistic under-
standing of agent interactions.
Characteristics: Readability, Usability, Functional Suitability

3. Question: Do you think the programming language is type-safe enough for reliable
implementation?
Rationale: Assesses whether users encountered edge cases that were not properly
safeguarded by the language.
Characteristics: Reliability, Usability, Functional Suitability

4. Question: Are the semantics of the language comprehensive enough to address real-
world use cases?
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Rationale: Provides insights into whether the semantics for communication flow
specification are sufficient, or if additional constructs are needed.
Characteristics: Functional Suitability, Usability, Readability

5. Question: Are the supported element types (agent, channel, environment, holon,
and execution flow) intuitive and descriptive enough?
Rationale: Assesses whether the breakdown of element types is adequate and intu-
itive.
Characteristics: Usability, Readability, Functional Suitability

6. Question: Is the parametrization of agents useful in your use cases?
Rationale: Provides information on the usefulness of agent parametrization.
Characteristics: Modularity and Reusability, Usability, Functional Suitability

7. Question: Which of the implemented execution flows do you find most useful?
Rationale: Provides insights into the types of execution flows that are most benefi-
cial.
Characteristics: Functional Suitability, Performance Efficiency, Usability

8. Question: Are there execution flows missing from the current system that you think
should be added?
Rationale: Identifies additional execution flows users might expect.
Characteristics: Functional Suitability, Modularity and Reusability, Usability

9. Question: Is the range of supported communication protocols (TCP and UDP) suf-
ficient to support communication between agents, environments, and channels?
Rationale: Rationale: Evaluates whether the TCP and UDP protocols (and un-
derlying mechanics) are adequate for agent communication with environments and
channels.
Characteristics: Interoperability, Functional Suitability, Reliability

10. Question: Do you see the concept of holons as valuable? If so, in what ways?
Rationale: Explores the usefulness of agent hierarchies and the potential for building
multi-layered MAS.
Characteristics: Modularity and Reusability, Usability, Functional Suitability

11. Question: How straightforward do you find replacing an existing agent with another
within the system?
Rationale: Assesses how modular and interchangeable the agent components are,
and whether the system supports easy substitution without extensive reconfigura-
tion.
Characteristics: Modularity and Reusability, Usability, Reliability
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12. Question: How does specifying communication flows in this language compare to
other agent frameworks you have used?
Rationale: Helps assess how easily and clearly communication flows can be specified
in this language compared to other agent frameworks.
Characteristics: Usability, Interoperability, Functional Suitability

13. Question: How useful do you find the channel’s ability to transform messages from
one format to another during transmission?
Rationale: Assesses whether message transformation capabilities (e.g., JSON to
XML) are useful.
Characteristics: Functional Suitability, Modularity and Reusability, Usability

14. Question: Are there additional concepts you would find valuable in the language?
Rationale: Identifies additional concepts or functionalities that could enhance the
language.
Characteristics: Functional Suitability, Usability, Modularity and Reusability

7.3.2 Orchestration platform

1. Question: Do you see the artifact being implementable in the majority of systems?
Rationale: Helps us assess whether the artifact is adaptable and versatile enough
to fit into diverse system architectures and use cases, regardless of the underlying
infrastructure or objectives.
Characteristics: Interoperability, Modularity and Reusability, Usability

2. Question: What is the typical number of agents in your MAS?
Rationale: Offers an understanding of the scale of MAS typically handled by evalu-
ators, giving insights into the artifact’s scalability and ability to manage high agent
counts.
Characteristics: Performance Efficiency, Scalability, Usability

3. Question: Do you think the error handling mechanism covers a good amount of
edge cases (e.g., an agent goes down)?
Rationale: Evaluates the robustness and reliability of the platform by assessing how
well it handles critical edge cases and ensures continued operation during failures
or unexpected scenarios.
Characteristics: Reliability, Functional Suitability, Usability

4. Question: Can intelligent agents (e.g., Gen AI-powered) be easily integrated with
the platform?
Rationale: Determines whether the artifact supports integration with state-of-the-
art AI technologies, ensuring relevance and compatibility with modern intelligent
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agent use cases.
Characteristics: Interoperability, Modularity and Reusability, Functional Suitability

5. Question: Do you see any performance downsides in the solution?
Rationale: Assesses potential bottlenecks or inefficiencies that could affect the plat-
form’s performance under typical or high-demand workloads.
Characteristics: Performance Efficiency, Reliability, Usability

6. Question: Is the support for distributed agents sufficient, particularly in terms of
communication, synchronization, and fault tolerance?
Rationale: Gauges whether the platform adequately addresses the complexities of
managing distributed agents, including communication, synchronization, and fault
tolerance.
Characteristics: Interoperability, Performance Efficiency, Reliability

7. Question: Does the cloud support (e.g., running in Docker [110]) match your needs
in terms of deployment flexibility, scalability, and compatibility with your existing
infrastructure?
Rationale: Validates the artifact’s compatibility with cloud environments and con-
tainerized solutions, ensuring ease of deployment and scalability in cloud-based sys-
tems.
Characteristics: Interoperability, Usability, Modularity and Reusability

8. Question: Are there any additional functionalities of the orchestration platform that
you would find useful?
Rationale: Provides insights into potential gaps in the platform’s feature set, en-
abling identification of enhancements that could improve its utility and adoption.
Characteristics: Functional Suitability, Usability, Modularity and Reusability

7.3.3 Agent definition

1. Question: Is the agent definition easy enough to write?
Rationale: Determines whether the system provides a user-friendly mechanism for
specifying agents, enabling developers to describe agents without excessive complex-
ity or ambiguity.
Characteristics: Usability, Writability, Readability

2. Question: Is the agent definition clear and accessible to non-technical stakeholders,
such as project managers or domain experts?
Rationale: Explores whether the specification format is clear and accessible to non-
technical users, promoting collaboration and reducing learning curves.
Characteristics: Readability, Usability, Writability
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3. Question: Are the supported properties for agent definition sufficient for your use
cases? If not, what is missing?
Rationale: Evaluates whether the current set of attributes in the agent definition
comprehensively captures the necessary agent features, or if additional properties
are needed for broader applicability.
Characteristics: Functional Suitability, Usability, Modularity and Reusability

4. Question: How much effort is required to adjust an existing agent for inclusion into
the system based on the artifact?
Rationale: Evaluates the level of modifications needed to make existing agents com-
patible with the system, highlighting potential barriers to adoption and integration
effort for developers.
Characteristics: Modularity and Reusability, Usability, Reliability

5. Question: Do updates to your existing agent business logic after its inclusion in
the artifact-based MAS require changes to the agents’ orchestration specification
(particularly, specification of communication flows)?
Rationale: Assesses whether the system supports independent updates to agent
business logic without requiring extensive changes to the communication flows spe-
cification, ensuring ease of maintenance and scalability.
Characteristics: Reliability, Modularity and Reusability, Functional Suitability

6. Question: Which communication protocols do your agents utilize for communication
with external systems?
Rationale: Provides insights into the range of communication protocols used, helping
determine whether the system accommodates distributed agents and supports the
most commonly used protocols.
Characteristics: Interoperability, Functional Suitability, Reliability

7.4 Interviews

During the interviews, evaluators provided detailed feedback on their experiences with the
artifact. The focus was on understanding what they had attempted to build using the ar-
tifact, including the types of communication flows envisioned, their goals, and the context
in which the artifact was applied. The strengths and limitations of the implementation
were examined by exploring the challenges encountered, obstacles that hindered progress,
and instances where the artifact did not fully meet expectations.

Feedback was also gathered on potential enhancements and usability improvements.
This included identifying additional features or functionalities that could provide value,
suggestions for hints or guidelines that might have streamlined the process, and gaps in
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documentation or user support that impacted the experience. These insights were used
to inform iterative refinements, ensuring better alignment with user needs and facilitating
successful adoption for real-world applications.

7.5 Results

The evaluation results were analyzed using thematic analysis. This method is well suited
for the qualitative nature of the data, as it supports the identification of patterns across
evaluator feedback without discarding nuance. Thematic analysis enables a grounded
interpretation of how evaluators engaged with the artifact, capturing not only what worked
and what did not, but also why certain experiences emerged. It offers flexibility in working
with a structured set of evaluation criteria while remaining open to recurring patterns that
may not have been explicitly anticipated [62].

The structure of the analysis mirrors the structure of the questionnaire, which is or-
ganized into three sections: agents’ orchestration specification, orchestration platform,
and agent definition. Within each component, results are organized according to the
two evaluation dimensions: artifact quality and standard programming language criteria.
Each characteristic under these dimensions serves as an analytical lens. For every charac-
teristic, recurring themes in the data are presented along with representative observations
and targeted recommendations. This format maintains a consistent flow while allow-
ing component-specific issues and insights to be surfaced clearly. Together, these findings
provide a detailed account of how the artifact was perceived in terms of both its functional
role and its underlying design.

7.5.1 Agents’ orchestration specification

The key characteristics analyzed in relation to the agents’ orchestration specification
include interoperability, modularity and reusability, usability, and functional suitability,
which fall under the artifact quality dimension. In addition, the analysis considers readab-
ility, writability, and reliability, drawn from the standard programming language criteria.
Together, these characteristics provide a comprehensive lens for evaluating both the func-
tional properties of the orchestration specification and the expressiveness and robustness
of its underlying language.

7.5.1.1 Interoperability

Most evaluators had a positive view of the interoperability offered by the agents’ orches-
tration specification. They felt that the current support for communication protocols like
TCP and UDP was enough for the platform’s needs. At the same time, some evaluators
suggested improvements, especially adding support for more advanced protocols such as
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SCTP, MQTT, and gRPC. These could make the platform more compatible with com-
plex distributed systems. A few also pointed out that the system currently lacks built-in
support for pub-sub mechanisms and secure protocols, which might be a drawback for
certain advanced use cases.

Although the feedback to add more protocols is reasonable, implementing it may re-
quire significant changes to the current architecture. At the moment, agents communicate
using channels based on UDP and TCP, which are well-suited for this platform because
of their simplicity and low overhead. Introducing more advanced protocols like gRPC or
MQTT could certainly help address different requirements around security, latency, and
scalability. However, these protocols introduce additional complexity and may require a
redesign of how agents connect and exchange messages, which falls outside the scope of
this research.

Below are key reflections from reviewers:

• "I think the protocols cover the main ones you would expect/want in for this kind of
system. The agents are able to choose their protocol, and the channels can translate
to the orchestration’s internal protocol." from Michael van Elk

• "In its current form I think it is adequate. However the system will probably benefit
from adding SCTP as an additional layer 4 protocol. This is a message based
protocol with characteristics of both UDP and TCP but with message boundaries
built in." from Rio Kierkels

• "XMPP/MQTT/gRPC/MCP would add even more usefulness. XMPP would allow
real-time agent to human interaction, MQTT is used by IoT unreliable high-latency
networks in automotive/healthcare/transport/financial industries..." from Peter Sk-
varenina

7.5.1.2 Modularity and reusability

When it comes to modularity and reusability, feedback is largely positive. Evaluators
liked the ability to parametrize agents, as this allows the same agent logic to be reused
with different communication channels. This flexibility is seen as a major benefit in com-
plex systems. However, some concerns were raised about the lack of validation between
the parametrization and implementation, and the optional nature of certain parameters,
which could lead to errors. The concept of holons is also viewed favorably, especially for
managing complexity in large systems through hierarchical structuring. While holons are
seen as useful for encapsulation and logical separation, there are suggestions for improving
the abstraction to avoid leaks and to align interfaces more closely with agents. Replacing
agents within the system is generally considered easy, provided the new agent adheres to
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the same communication interface, although some evaluators expressed concerns about
runtime validation and the ease of replacement in production environments.

Improved validation and stronger type safety for agent parametrization could be in-
troduced both at the language level and in how the platform interprets those parameters
at runtime. Making agent parametrization mandatory rather than optional adds clarity,
as it removes ambiguity and enforces a consistent structure for defining agent behavior.
While holons are generally seen in a positive light, they appear to be a less commonly
used pattern, which may explain why some users find them less intuitive. In the current
implementation, holons and environments are custom designed components that integrate
well with the overall architecture. However, aligning their design more closely with widely
understood concepts, such as channels, could make them easier to grasp, especially for
users who are new to the artifact or unfamiliar with the holonic model.

Key reflections from evaluators are below:

• "(Holons are) conceptually useful for structuring large systems hierarchically and
managing complexity via clusters with defined interfaces (environments)..." from
Richard Abrich

• "My only concern would be that the parametrization is not validated against the
implementation (as the framework aims to be agnostic to this), meaning there may
be a mismatch between specification and implementation." from Michael van Elk

7.5.1.3 Usability

Usability of the agents’ orchestration specification is viewed in a positive light. Evaluators
found it mostly easy to read and write, especially appreciating its concise and minimal
syntax. This simplicity is seen as both a strength and a challenge, as it can create a
learning curve for new users. The logical and clean structure of the specification helps with
understanding, and the syntax is often described as intuitive. However, some evaluators
pointed out that the initial experience could be improved, especially when it comes to
understanding special keywords and how inputs and outputs are separated. The different
entity types are considered clear and descriptive, though a few questioned whether certain
concepts, like the environment abstraction, are truly necessary. Compared to other agent
frameworks, the orchestration language stands out for its focus on communication flow
and its declarative style, rather than mixing logic with traditional code. While this
approach is praised for its clarity and simplicity, some evaluators noted that the lack
of dynamic features and built-in agent behaviors might make it harder to use in more
complex situations.

Comprehensive documentation with a variety of examples could help make learning the
programming language easier, especially when it comes to understanding niche keywords
and concepts. Adding more explicit type information to the language could also make the
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specification easier to read and more intuitive. Visual tools for debugging and exploring
the orchestration structure would improve the development experience and make the
system more approachable. To enhance flexibility, it could be helpful to support dynamic
startup of agents. This might involve introducing new concepts, such as orchestration
platform reacting to agent messages or other runtime triggers. However, introducing such
dynamic behavior could make it harder to maintain a clear and consistent view of the
agents’ state within a cluster, which is something the language currently does well and
was designed to support.

Following are reflections from the evaluators:

• "It is good and I like it because of simplicity, some of the commercial orchestration
frameworks might be more elaborated." from Neven Vrček

• "Yes, (agents’ orchestration specification is) easy to write and read." from Vineet
Sinha

7.5.1.4 Functional suitability

Most evaluators found the agents’ orchestration specification to be functionally well-suited
for its intended purpose. They acknowledged its ability to clearly define communication
flows between distributed services. The language is praised for covering essential elements
like environments, channels, agents, and execution flows, all of which have been shown to
handle complex systems such as audio or video streaming and inter-vehicle communica-
tion. However, one common concern is the lack of support for dynamic runtime behavior,
which limits flexibility. Evaluators expressed interest in features such as dynamic agent
life cycle management, more advanced triggering mechanisms, and stronger error hand-
ling. While the existing execution flows (especially parallel and sequential) are seen as
useful, there is a call for more advanced flows, such as event-triggered or time-based ex-
ecution. The ability of the channel agent to transform messages is highlighted as a key
strength, helping different types of agents work together more effectively.

To build on the existing strengths of the specification, improving error handling and
exception management would make the system more reliable and better suited for a vari-
ety of real-world scenarios. Expanding support for advanced execution flows, such as
event-driven and time-based actions, could give users greater control and flexibility in
orchestrating agents. However, this would also require changes to both the orchestration
platform architecture and the programming language used to define communication flows,
since the current setup only supports predefined configurations. Together, these improve-
ments would make the platform more user friendly and adaptable to a broader range of
use cases.

Below are key reflections from reviewers:
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• "The parallel execution flow might be the most useful one. Running agents in parallel
shows some of the fundamental values of multiagent systems." from Bogdan Okreša
Ðurić

• "Parallel | for independent tasks, sequential & for pipelines. Error handling ! is
crucial for robustness. Restart + good for long-running services." from Richard
Abrich

7.5.1.5 Readability

Most evaluators found the agents’ orchestration specification to be clear and readable.
They described the supported elements (i.e. agent, channel, environment, holon, and
execution flow) as intuitive and easy to understand. Many agreed that the roles are well
defined and correspond to familiar ideas from MASs or distributed systems, which helps
new users get up to speed more quickly. Still, a few pointed out that the difference
between the environment and the channel may not be necessary, since their functions
appear to overlap. Although the term holon is generally understood, some users noted
that it may require extra explanation, especially for those unfamiliar with its origin.
When it comes to specifying communication flows, most evaluators praised the clarity and
structure, especially in small systems. However, some raised concerns about navigating
larger systems, where the growing complexity can make understanding more difficult.
Several respondents suggested that tools for visualizing the flow would be helpful.

To improve the experience, it may be worth reconsidering whether the environment
and channel should remain as separate entities or be merged to simplify the language
model. It is understandable that the agents’ orchestration specification becomes harder to
read in larger systems, where proper parametrization and possibly additional structuring
concepts would be important for maintaining clarity. Introducing a visual tool that can
consume the specification and provide a live preview would also be valuable and could
likely be integrated smoothly with the programming language.

Key reflections from evaluators are below:

• "...the supported agent types are descriptive and intuitive enough. The names used
make it easy and straightforward to determine what the chosen entity type is about
and what their role is in the model." from Bogdan Okreša Ðurić

• "...it’s very easy to reason about this since the file can be read top-down without
a lot of jumping back and forth. That’s great for building a mental model of the
system while reading line by line." from Matthias Bayer
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7.5.1.6 Writability

In terms of writability, evaluators found the agents’ orchestration specification expressive
and logically structured, making it suitable for defining communication flows. However,
they also noted that the custom syntax and unique elements like channels and holons
introduce a learning curve. Some users pointed out that understanding how to use special
keywords such as ENV_INPUT is not always straightforward without consulting document-
ation. While the minimal and domain-specific syntax is seen as a strength, there are
concerns about how well it supports more dynamic scenarios, particularly when input
and output separation adds complexity to configuration. Additionally, a few evaluators
suggested that introducing more verbosity, such as optional type annotations, could im-
prove clarity during development. There were also recommendations to allow writing the
specification in formats like YAML, which could make the language more approachable
for new users and easier to integrate with existing workflows.

To improve writability, adding more documentation and practical examples would
help reduce the learning curve for new users. Aligning some of the keywords with more
familiar terms used in other programming languages could also make the specification
easier to write and understand. Additionally, Large Language Models (LLMs) could be
used to translate natural language descriptions into orchestration specifications, making
it easier to get started and providing clear examples for learning. Another helpful tool
could be a step-by-step generator, where users can define the number of agents, their
communication channels, and other key elements through a guided interface. This would
simplify the writing process further and support users in building correct and complete
specifications without needing to understand all syntax details from the beginning.

Following are reflections from reviewers:

• "Yes. The specification uses minimalistic syntax that is compact and readable (e.g.,
agent a : self -> c). However, it has a learning curve due to custom syntax and
requires familiarity with concepts like channels and holons." from Igor Tomičić

• "Yes, the configuration is easy to write and read. The limited but domain specific
syntax makes it easy to express and understand complex configurations without
much noise." from Matthias Bayer

• "It is quite easy to learn, possibly because the language itself is quite small. However
I don’t completely see why the orchestration spec and the ad need to be in separate
languages. Unless if statements and loops are introduced, it might all work from
the YAML markdown language." from Rio Kierkels
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7.5.1.7 Reliability

Feedback on the reliability of the agents’ orchestration specification, and specifically the
programming language, particularly regarding type safety, is mixed. Some evaluators
reported confidence in the system, noting that they did not encounter edge cases and
found the specification easy to follow for maintaining type consistency. However, some
expressed concerns about the lack of explicit type checking, which could lead to errors
during runtime if the message formats do not match the expectations of the receiving
channels. The absence of both static and dynamic type checking was a common concern,
with some noting that communication mismatches are only detected when transformation
rules fail. This limitation makes static analysis more difficult and reduces clarity when
trying to understand the system’s behavior.

To improve reliability, it would be valuable to introduce stronger type checking, both
during development and at runtime. Adding basic typing features, such as message
schemas or type definitions for channels, could help catch mismatches early and make the
system more predictable. These additions would also guide developers in using the correct
formats and reduce the risk of miscommunication between agents. In addition, providing
support for validating the specification before running the orchestration platform would
create a quicker feedback loop, helping users identify and fix issues early. Extensions for
development environments that can analyze the written specification and check it against
the programming language could further improve this experience by highlighting mistakes
as the user writes.

Some of reviewer reflections are as follows:

• "Lack of explicit type checking could lead to runtime errors if message formats don’t
match channel expectations, despite transformation capabilities." from Richard Ab-
rich

• "...there seems to be no static or dynamic type checking. Communication mis-
matches (e.g., sending XML to a JSON listener) are not flagged unless caught in
transformation rules? Introducing basic typing (e.g., schemas) might improve ro-
bustness." from Igor Tomičić

7.5.2 Orchestration platform

For the orchestration platform component, the analysis primarily focuses on character-
istics from the artifact quality dimension. These include interoperability, modularity and
reusability, usability, performance efficiency, and functional suitability. This set of char-
acteristics captures both the structural and operational aspects of the platform, emphas-
izing how well it supports integration, maintainability, user interaction, and performance
in realistic deployment scenarios.
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7.5.2.1 Interoperability

Evaluators widely view the platform as strong in terms of interoperability. They re-
cognize its flexibility and adaptability when integrating with various systems, especially
those involving distributed services and cloud native applications. Many see the platform
as suitable for a wide range of use cases, but some concerns remain about integration
with older legacy systems and the potential overhead in production environments. The
platform’s ability to support intelligent agents is also well regarded, with most evaluat-
ors agreeing it can work effectively with Gen AI agents. Distributed agent support is
considered one of the platform’s key strengths, though some suggested the addition of
a discovery service and support for mesh-style communication. Cloud support through
Docker [110] and Kubernetes aligns with industry practices and is appreciated, though
some users expressed interest in a fully managed or hosted cloud solution to reduce oper-
ational burden.

To improve interoperability, the platform could provide better tools and clearer docu-
mentation for integrating with legacy systems, making the transition easier for organiza-
tions with existing infrastructure. A defined protocol or process for integration, supported
by various checks and an environment for incremental testing, could be especially useful.
This would allow users to test parts of the system without needing to integrate the entire
MAS at once. Expanding the range of supported communication protocols between the
orchestration platform and agents should not be a challenge, since the platform was ori-
ginally designed with extensibility in mind. While the platform is currently best suited for
simpler environments, future integration with cloud ecosystems could improve scalability,
interoperability, and security, making it a stronger fit for more complex and demanding
scenarios.

Below are reflections from the evaluators:

• "Yes, provided the intelligent agent exposes its functionality via a supported in-
terface (e.g., HTTP API). APi would wrap it like any other agent." from Richard
Abrich

• "Yes. Having a containerised-first approach is beneficial, as the agents and the
containers may easily be distributed throughout the system network." from Bogdan
Okreša Ðurić

7.5.2.2 Modularity and reusability

The orchestration platform is viewed as modular and reusable, with evaluators recognizing
its potential to be applied across different types of systems. Its flexibility is especially
valued in environments that require coordination of distributed services, such as research
setups, hybrid AI architectures, and cloud-based applications. Some evaluators, however,
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noted that the platform may feel overly specialized in certain contexts, particularly where
agents already share a communication protocol or where developers have limited control
over how agents are started or managed. In such cases, the modularity may not provide
a clear benefit. There is also an acknowledgment that, while the platform is adaptable, it
may require a significant amount of manual setup and domain knowledge to use effectively
in more demanding environments, such as production systems.

To improve modularity and reusability, the platform could offer automated configur-
ation tools and reusable templates to reduce setup effort. Adding support for integrating
with agents that are already running and not directly managed by the user would make
the platform more adaptable. This flexibility would allow it to fit into a wider range of
real-world systems, especially those with limited control over agent life cycle or external
dependencies. Although connecting to an already running agent is technically feasible, the
difference in life cycle visibility between managed and unmanaged agents would require
significant architectural changes to ensure consistent and reliable support.

Key reflections from evaluators are below:

• "Integration is protocol-agnostic and can support API-driven agents like LLMs, as
seen in the B.A.R.I.C.A. case. Wrappers can encapsulate any logic, and orchestra-
tion remains unchanged as long as the communication contract is met." from Igor
Tomičić

• "I’ve not seen any indication that these types of agents require special handling.
Apart from generally higher latency and possibly specialized hardware requirements,
these function similarly to normal networked services." from Rio Kierkels

7.5.2.3 Usability

Feedback on the usability of the orchestration platform is mixed, with evaluators recog-
nizing useful features but also pointing out areas for improvement. While the current
functionality is appreciated, some evaluators suggest enhancements such as advanced
monitoring, better debugging tools, and dynamic agent registration. Some evaluators
also expressed interest in web-based orchestration visualization, centralized logging, and
dynamic execution graphs, noting similarities with platforms like Kubernetes in terms of
service discovery. There is also a call for better error handling, interface validation, and
the option to switch between visual and text-based editing modes. Overall, while the
platform meets the required usability needs, there is clear demand for a more intuitive
and interactive user experience.

The platform could integrate stronger monitoring and debugging capabilities to help
users manage orchestration flows more effectively, which is especially important in production-
ready environments. Since the artifact’s implementation follows common system design
patterns, integrating widely used debugging tools should be feasible. Adding dynamic
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agent registration and runtime validation would increase flexibility, particularly in real-
time systems. Support for secure communication protocols and centralized logging could
further improve data handling and overall system security. Lastly, offering a hosted cloud
version could simplify onboarding for users who prefer not to manage container envir-
onments manually, a task that often requires additional effort, especially when ensuring
compliance with the operational requirements needed for smooth and secure deployment.

Following are reflections from evaluators:

• "Some debugging features would be also beneficial e.g. log files about interaction
among agents in real time." from Neven Vrček

• "Yes, docker is the perfect abstraction for all my use cases. The ability to run
arbitrary code (as a docker container) and having the ability to define inputs and
outputs it all it needs to run any business logic and agent code." from Matthias
Bayer

7.5.2.4 Performance efficiency

Sentiment toward the orchestration platform’s performance efficiency is mixed. Evaluat-
ors report a wide range of experiences, depending on the number of agents in their MASs,
from just a few to several hundred. Concerns are raised about scalability and latency, with
some users noting that the platform introduces latency due to indirect communication and
lacks mechanisms like backpressure, flow control, and resource usage monitoring. Oth-
ers, however, do not observe major performance drawbacks and appreciate the decoupled
nature of the interface definitions, which allow for potential performance improvements
without needing a full system redesign. Still, there are concerns that the central orches-
tration component could become a bottleneck or a single point of failure, particularly
in large scale scenarios. While most evaluators agree that the platform provides a clear
structure for managing distributed agents, some point out that the lack of a discovery
service and centralized registry could limit its use in mission critical or geographically
distributed deployments.

To improve performance efficiency, one possible strategy is to allow agents to com-
municate with one another directly, rather than always routing messages through the
orchestration platform. This would require agents to be designed with more flexibility so
they can integrate and exchange information independently when needed. Currently, the
orchestration platform acts as a single unit, and if it fails, agent communication comes
to a halt. A potential improvement would be to support multiple instances of the or-
chestration platform that share the state of agents and the overall orchestration. In such
a setup, if one instance fails, agents could switch to another available instance. This
approach would not only improve system resilience but also require enhancements to the
platform’s agent discovery capabilities to support seamless failover and coordination.
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Evaluators shared the following observations:

• "Small number of latency-optimized agents. Latency optimization might be tricky
in this framework, likely also scalability to lots of agents." from Peter Skvarenina

• "In case with large number of agents, the orchestrating platform is a bottleneck of
the architecture and can be saturated leading to slower work of MAS. It is also a
single point of failure of the architecture." from Neven Vrček

7.5.2.5 Functional Suitability

The functional suitability of the orchestration platform is viewed with a mix of appre-
ciation and constructive criticism. While some evaluators find the platform sufficient
for the majority of use cases, others highlight the need for features that better support
complex and evolving environments. In particular, there is interest in enabling runtime
agent registration and more dynamic execution flows, which would increase adaptability.
Error handling is seen as an area for improvement, with the current support covering only
basic scenarios and lacking advanced recovery mechanisms and health checks. Although
the platform is capable of integrating intelligent agents, evaluators point out the limited
support for streaming agents and the challenges involved in building and managing such
agents effectively.

To strengthen functional suitability, the platform could benefit from introducing runtime
agent registration and dynamic execution capabilities that respond to changing system
states. This would require additional tracking of agent life cycle events, and potentially
extending monitoring to include other aspects such as message passing. Improving system
resilience could also involve adding stronger fail safe mechanisms, better validation, and
periodic health checks, where each entity reports its status and bandwidth usage to the
orchestration platform at regular intervals.

Following are reflections from reviewers:

• "Error handling mechanism seems basic, lacking recovery strategies. No health check
are mentioned." from Peter Skvarenina

• "Indeed, it would seem that the artefact applies to integrating GenAI agents into
a multiagent system. Moreso, it seems that the artefact could be used to facilitate
communication between non-GenAI agents and those that do use modern intelligent
solutions." from Bogdan Okreša Ðurić

7.5.3 Agent definition

For the agent definition component, the primary characteristics analyzed from the arti-
fact quality dimension include interoperability, modularity and reusability, usability, and
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functional suitability. In addition, the evaluation incorporates the standard programming
language criteria, focusing on readability, writability, and reliability. This combination
provides a balanced view of both the structural qualities of the agent definition and the
expressiveness, clarity, and robustness of the language used to define it.

7.5.3.1 Interoperability

Sentiment from evaluators regarding the interoperability of the agent definition is posit-
ive, with a diverse range of supported communication protocols being utilized. HTTP is
identified as the most frequently used protocol among agents, reflecting its reliability and
widespread adoption in integration scenarios. WS and Netcat are also commonly used.
In addition to these, some evaluators mention protocols like XMPP, MQTT, gRPC, and
Server-Sent Events (SSE), suggesting that while the current protocol support is sufficient
for many use cases, there is growing interest in expanding interoperability to more spe-
cialized environments. These suggestions reflect a need to accommodate use cases such as
real-time communication, IoT integration, and niche protocols used in specific domains.

Extending the set of supported protocols within the agent definition would not require
significant changes. The agent definition and its corresponding adapter on the orchestra-
tion platform are designed to support the easy addition of new communication protocols,
whether synchronous or asynchronous. Gen AI agents, for example, are increasingly mak-
ing use of SSEs to stream information progressively. Since SSE is conceptually similar
to WS, which is already supported by the platform, introducing support for SSE should
be straightforward. These improvements would enhance protocol flexibility and further
strengthen the platform’s interoperability.

Below are key observations from evaluators:

• "XMPP/MQTT/gRPC/MCP etc. XMPP is used by my systems to allow interaction
between agents and humans real-time, MQTT is used by my agents to communicate
with IoT sensors, and gRPC is used by my agents to call programs on different
computers." from Peter Skvarenina

• "Usually, the agents communicate using a simple API or web sockets. Sometimes,
agents are in an environment where it is sufficient to use simple XMPP." from
Bogdan Okreša Ðurić

7.5.3.2 Modularity and reusability

Opinions on the agent definition component’s modularity and reusability are divided, with
clear recognition of its potential alongside suggestions for refinement. Many respondents
find that the effort required to adapt an existing agent for use within the system is low to
moderate, especially when the agent already supports a compatible protocol and can be

165



Chapter 7. Evaluation 7.5. Results

started by the platform. Some evaluators point out limitations, such as the restriction to
a single input and output communication interface per agent, and the lack of support for
direct output writing in request and response-based protocols. When it comes to updating
agent logic after integration, most agree that internal changes do not require modifications
to the communication flow specification unless the external interface is altered. The
separation between communication flow and agent implementation is generally seen as a
strength of the design.

Currently, the agent definition uses a single format to specify both the communication
protocol and the contract with the agent. This unified approach is convenient and pro-
motes consistency across different use cases, but it can also limit flexibility for protocol
specific implementations, sometimes requiring changes to the agent’s business logic or
communication contract. One possible improvement would be to support separate pro-
tocol definitions tailored to each protocol, which could reduce the effort needed to adapt
agent logic, though at the cost of reduced readability and maintainability. Additionally,
adding support for multiple input and output communication interfaces per agent could
improve flexibility but would require rethinking the structure of the agent definition and
the way communication flows are specified in the orchestration layer. In particular, it
would be necessary to define how the orchestration platform determines which commu-
nication interface to use when interacting with the agent.

Following are reflections from the evaluators:

• "Low effort if the agent already uses a supported protocol (HTTP, WS, STDIN,
etc.), just need to write the .ad file. High effort if it uses an unsupported protocol,
requires modifying the agent or creating a proxy." from Richard Abrich

• "Low to moderate effort. As long as the agent supports one of the accepted I/O
formats and can be started by the platform (UNIX, Docker, Kubernetes), inclusion
mostly involves defining its .ad file. No codebase changes are typically required."
from Igor Tomičić

• "It seems like one constraint is that an agent can only have one input and output
channel. Also the output seems to be polled by the platform. That’s something to
keep an eye on. Would be great to have the ability to write the outputs directly
somewhere from the agent." from Matthias Bayer

7.5.3.3 Usability

While the agent definition was generally found usable by evaluators, several noted that it
may pose challenges for non-technical users. Many evaluators find the process of writing
and configuring agent definitions to be straightforward, particularly for those familiar
with YAML. However, the format may feel repetitive when specifying basic functionality,
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and some evaluators note that the current structure could benefit from simplifications or
higher-level abstractions. While the agent definition is generally intuitive for developers,
non-technical stakeholders may find it difficult to understand due to its technical nature.
This points to a need for clearer documentation and possibly the introduction of a more
user-friendly interface. Suggestions include the development of a visual or form-based
editor that would allow users to configure agents through guided inputs rather than raw
configuration files.

To improve usability, the system could offer tools that simplify repetitive tasks and
abstract common configuration patterns, reducing manual effort. Providing a visual ed-
itor or step-by-step form that generates valid agent definitions would make the system
more accessible to non-technical users. In addition, improving documentation with real-
world examples and clear explanations of each supported property would help users of
all backgrounds work more confidently with the agent definition. These improvements
would enhance the overall usability of the component and make it more approachable for
a wider audience.

Below are key observations from the reviewers:

• "I expect non-technical stakeholders will be confused by the many technical terms
in the agent definitions, such as data-type, type: unix, and values such as <!eof!>
probably look scary to them" from Michael van Elk

• "Since agents are defined using the parametrised approach, it is easy to modify and
customise agents for their inclusion in another system. Such adaptability is most
welcome." from Bogdan Okreša Ðurić

7.5.3.4 Functional suitability

Evaluators’ feedback on the functional suitability of the agent definition is generally pos-
itive, with most finding the supported communication protocols adequate for their needs.
The current approach allows flexibility in protocol specification and is seen as an inter-
esting and user friendly way to describe agent communication interfaces. However, some
evaluators point out the need for additional features to improve operational flexibility. In
particular, the lack of support for dynamic updates to agent definitions and the limited
error handling capabilities are identified as areas for improvement. Nonetheless, most
respondents consider the existing feature set sufficient for many real-world applications.

In the current state, any updates to an agent’s communication interface require cor-
responding changes to the agent definition. This manual process can introduce failures
if not done correctly and may lead to significant issues, especially if the agent is already
running in a production environment. One possible solution to this challenge would be to
allow the orchestration platform to retrieve the agent definition directly from the agent
itself, rather than relying on a manually written configuration file. For example, each

167



Chapter 7. Evaluation 7.5. Results

agent could expose a common interface that the orchestration platform queries at startup
to fetch the communication contract. This contract could then be used to automatically
configure the appropriate communication adapter, reducing the risk of mismatches and
simplifying the update process.

Key reflections from the evaluators are as follows:

• "Would love to see error handling, auto-scaling and maybe a health check to see if
the agent properly started up" from Matthias Bayer

• "APi does not support dynamic changes to agent definitions which might suppress
its suitability for fast changing environments." from Peter Skvarenina

7.5.3.5 Readability

The readability characteristics of the agent definition is viewed positively. Most evaluators
find the syntax clear and easy to work with, especially those familiar with YAML and tools
like Docker. The YAML-like structure is appreciated for its simplicity, allowing developers
to define agents in a straightforward manner. Some concerns were raised about repetitive
patterns in basic configurations and the ambiguity of certain values, which may not be
clearly distinguishable as special syntax or plain strings. While developers find the format
intuitive, non-technical stakeholders may struggle to understand the definitions without
supporting explanations or documentation. Technical terms and protocol references can
be confusing to those without a technical background, highlighting a gap in accessibility.

Introducing templates in YAML could help reduce boilerplate and make the process
more straightforward by minimizing repeated code, though this might come at the cost
of reduced clarity in some cases. For non-technical stakeholders, developing a visual or
form-based editor could significantly improve accessibility, allowing them to interact with
agent definitions without requiring deep technical knowledge. Certain properties within
the agent definition, such as message format, delimiter, and related configuration details,
may still require a basic level of technical understanding to configure correctly.

Some of the reflections from the evaluators are listed below:

• "Developers familiar with Docker or Compose will find the structure intuitive. Tem-
plates could help reduce boilerplate further." from Igor Tomičić

• "...(agent definition) is very easy to read also thanks to the very common vocabulary
used." from Matthias Bayer

7.5.3.6 Writability

Evaluators’ feedback on the writability of the agent definition is largely positive, particu-
larly in terms of how clearly the configuration allows developers to express agent behavior
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and protocol interactions. The structure is considered flexible enough to capture a wide
range of communication protocols, and the available properties are viewed as sufficiently
comprehensive for most integration scenarios. Several evaluators note that the format
supports a logical and consistent way of defining agents, which contributes to a smooth
authoring experience.

Providing inline suggestions or lightweight editing tools that assist during authoring
could preserve flexibility while making the process of writing agent definitions faster and
more efficient. Clarifying the purpose and usage of each property in the supporting ma-
terial would also help users better leverage the expressiveness of the format, particularly
in more advanced protocol configurations. Additionally, offering an interface that ac-
cepts natural language input could further improve writability, especially for nontechnical
stakeholders who may find the syntax unfamiliar.

Key reflections on the observed characteristics are as follows:

• "Yes, the simplicity and YAML-like syntax make it easy to write." from Michael van
Elk

• "Although quite some technical knowledge is required to configure it directly. For
example, non-techinical people will probably not know why or when to use the
HTTP protocol vs raw TCP, what a delimiter is in the context of message parsing
or what JSON is." from Rio Kierkels

7.5.3.7 Reliability

Evaluators generally perceive the reliability of the agent definition component positively,
primarily because it relies on well known standards and does not introduce unfamiliar
elements or concepts. Some note that adapting request and response-based protocols into
an input and output-based format can create opportunities for misuse, which may lead to
failures if not handled correctly. This approach may also negatively affect characteristics
such as latency, as it prevents certain protocols from leveraging their intrinsic features to
their full potential.

Given the limited set of supported properties in the agent definition, which are de-
signed to be generic enough to support a wide variety of protocols, not all protocol-specific
functionalities can be fully utilized. This may affect latency or influence the overall be-
havior of agents in certain situations. Similarly, some fail-safe mechanisms might not be
used to their full extent. To improve reliability, it would be beneficial to strengthen valida-
tion of the agent definition and introduce more robust guardrails within the orchestration
platform, tailored to the characteristics and requirements of each supported protocol.

Some of the evaluator reflections are as follows:

• "Latency optimization often requires dynamically changing agents on the fly, react-
ing to their state and state of other agents" from Peter Skvarenina
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• "...however after the initial conversion (of agent into the orchestration platform),
further updates likely would not require further changes." from Michael van Elk

7.6 Objectives fulfillment

In Chapter 4, the high-level objectives of the artifact are laid out, defining several critical
requirements the artifact should fulfill. These include cloud support, agent orchestra-
tion, and similar capabilities. Below, each individual component is analyzed along with
evaluators’ feedback regarding its fulfillment:

• AI support: Since the implementation of agents is left to the engineer, and both the
orchestration platform and programming language are agnostic to the agent intern-
als, agents can implement any AI-based business logic. Evaluators confirmed this
flexibility and reported no concerns regarding the integration of intelligent business
logic.

• Flexibility and control of communication flow: The programming language is based
on the π-Calculus, which is tailored for modeling communication in concurrent sys-
tems [76]. Within the agents’ orchestration specification, engineers can define com-
munication flows between agents and other entities by specifying direction, parti-
cipants, protocol, and transformations from input to output. Evaluators noted that
the language is largely intuitive and allows for detailed and effective communication
flow definitions.

• Distributed agents orchestration: The orchestration platform, responsible for co-
ordinating and synchronizing agents, has been developed with support for distrib-
uted deployments and cloud environments in mind. Execution flows allow specify-
ing startup order (e.g., sequential, parallel), offering flexible orchestration options.
Evaluators expressed satisfaction with the artifact’s current support for distributed
agents.

• Specification and control of agent execution order: As previously mentioned, execu-
tion order can be defined using a variety of operators, enabling both basic and more
specialized use cases. Most evaluators agreed that the existing operators are suffi-
cient, although some suggested that it would be valuable to support agent startup
triggered by message-based events, not only life cycle events.

• Support for agent hierarchies: Agent hierarchies are supported through holonic sys-
tems and the introduction of environment interfaces, which facilitate communica-
tion between holons. The environment concept enhances communication flexibility.
Evaluators accepted the concept and its implementation, though noted it is not
something they frequently use in practice.
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• Ease of integration into existing systems: The artifact is designed for straightforward
integration into existing systems. This was confirmed by evaluators, who noted that
the integration effort is minimal. The orchestration platform is agnostic to the agent
implementation, allowing engineers to use any preferred technology. Predefined
communication protocols cover most use cases, though more specialized scenarios
may require additional protocols.

• Support for agents using different technologies and protocols: Engineers are free
to implement agents using any technology, as long as the communication interfaces
adhere to supported protocols. Most evaluators found the current set of protocols
sufficient, though they acknowledged that future use cases may demand broader
protocol support.

• Ease of component replacement: Adding, removing, or updating agents and commu-
nication flows is easily accomplished by updating the orchestration specification or
modifying agent definitions to reflect changes in communication contracts. Frequent
changes are considered in the implementation. Evaluators agreed that component
replacement is straightforward and incurs minimal effort.

• Operational scalability: The orchestration platform manages communication and
agent startup, but does not itself handle significant processing workloads. This
makes it suitable for scaling, assuming adequate underlying resources. However,
the platform’s centralized architecture may become a bottleneck if a critical error
occurs. Evaluators noted that their systems typically include only a small number
of agents, and thus scalability concerns are minimal in such contexts.

• Resilience and fault tolerance: The platform monitors agent life cycles, enabling
it to follow execution flows and perform recovery actions such as restarting agents
when needed. This contributes to its fault tolerance. Evaluators acknowledged this
capability but suggested that improved type safety in the programming language
could make the system more predictable and robust.

• Support for cloud computing: The orchestration platform allows agents to be de-
ployed as UNIX processes, Docker containers, or Kubernetes instances across dis-
tributed environments. However, it currently lacks built-in support for configuring
agent networks in distributed cloud environments, which must be handled extern-
ally. Evaluators considered the existing cloud support adequate, but noted that
making the orchestration platform cloud-native would be a valuable enhancement.

Based on the analysis of the predefined requirements, the implemented artifact, and
feedback from evaluators, it can be concluded that all high-level requirements for the
artifact have been met. Some requirements have been addressed more comprehensively
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than others, but any remaining areas for improvement can be developed further in future
iterations.
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Discussion

The integration of the implemented artifact into O HAI 4 Games use cases, along with
evaluations from project team members and independent experts, has highlighted both the
strengths of the artifact and areas where further improvement is possible. Opportunities
for enhancement are particularly in aspects such as error handling mechanisms, support
for additional communication protocols, and related technical considerations.

One of the areas highlighted for improvement is the artifact’s error handling and fail-
safe capabilities. This includes more rigorous type checking within the programming
language used to describe both the agents’ orchestration specifications and the agent
definitions themselves. Although the orchestration platform currently supports basic er-
ror handling mechanisms, particularly in managing agent life cycle events, there is room
to enhance these safeguards further. For example, additional mechanisms could be in-
troduced to handle failures related to the orchestration platform itself, communication
protocol disruptions between agents, and unexpected runtime conditions. Strengthening
these aspects would contribute to a more resilient and dependable system, especially in
large-scale or mission-critical deployments where reliability is essential.

The programming language and its elements were widely accepted by evaluators,
largely due to their intuitiveness. Nonetheless, some evaluators noted that the concept
of a holon is less familiar, and suggested that its naming and possibly its implementation
be reconsidered. In the current artifact, holons and their environments share many sim-
ilarities with the channel entity type, leading some to propose unifying the two. While
these suggestions are reasonable, maintaining a clear distinction between the two and
allowing users to incorporate holonic features on demand provides greater flexibility and
supports more advanced hierarchical modeling when needed, without imposing additional
complexity on simpler use cases.

On the subject of holons, they can communicate with one another only if they are
started through the orchestration platform and specifically use input and output environ-
ment interfaces. An agent started through the orchestration platform can be accessed by
external agents, including those not started as part of the orchestration platform. How-
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ever, this flexibility does not extend to holon environments, which limits how holons can
interact across boundaries. Adding more flexibility in this area, and specifically allow-
ing for external communication, would be highly beneficial. One possible approach is to
introduce additional configuration options for holon environments, similar to how agent
definitions are handled. This would allow users to specify the desired communication in-
terface for a holon, while the orchestration platform manages the inbound and outbound
communication accordingly.

Artifact evaluators noted that the agents’ orchestration specification is easy to read,
thanks to its simple primitives, intuitive structure, and clear syntax. However, in systems
with a large number of agents, the specification can become cluttered and difficult to
follow. To address this, several evaluators suggested developing a visualization tool that
can parse the orchestration specification and display agent communication flows in a
more digestible format. This could be achieved either by building a custom visualization
interface or by creating a conversion tool that translates the specification into an existing
visualization language, such as Mermaid.

One of the evaluators also suggested introducing more parametrization and template
support into the programming language. Parametrization is currently used for agents,
which helps reduce verbosity in the agents’ orchestration specification, as a single line
can replace at least two lines, especially for agents with multiple communication flows.
Expanding parametrization to other concepts, such as channel or environment message
transformations, could further simplify the specification. Additionally, it is likely that
multiple holons, defined in separate specification files, would share common declarations
such as channels or environments. By introducing templates that can be stored in a
shared file, users could import them into their individual holon specifications, promoting
reuse and consistency across different parts of the system.

Less technical users might struggle to write the agents’ orchestration specification
or agent definition, as there is at least some learning curve involved. One proposal to
address this is the use of NLP middleware, such as LLMs, which could take natural
language input from the user and convert it into a valid specification. To support this,
the model would need to understand the semantics, pragmatics, and structural elements
of the language, which may not pose a significant challenge given the language’s simplicity.
In addition, the output from the model could be passed through a validator to check for
correctness. An alternative to the natural language interface would be a command-line
tool that generates templates. This generator could prompt the user with a series of guided
questions such as "How many agents are there?" or "Which channels or environments does
agent X communicate with?". Based on the user’s answers, a valid specification could be
produced through a more deterministic and structured approach.

The orchestration platform currently operates on a static, predefined agents’ orches-
tration specification, meaning that all agents, their communication flows, and execution
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flows are known in advance. At this stage, there is no flexibility to run agents dynamically
or on demand. Introducing such a feature could be valuable for fast-paced and adaptive
environments, where responsiveness and scalability are critical. It could also support bet-
ter load balancing by allowing multiple instances of a specific agent to be started based on
the number of active users. However, while this addition would improve adaptability, it
may also reduce transparency, making it more difficult to maintain a clear understanding
of which agents are active within the MAS at any given time.

The orchestration platform in its current form is implemented in a way that only al-
lows it to start agents that are explicitly included in the orchestration. This is because
having visibility into an agent’s life cycle is crucial for knowing when the agent starts,
becomes ready, or is shutting down. Evaluators noted that the ability to integrate running
or active agents into the orchestration would be highly beneficial, especially as users begin
to develop more publicly accessible agents. While this improvement is certainly feasible,
it may require significant changes to both the orchestration platform and the agent wrap-
per, particularly regarding how failures are handled. If such an agent goes down, the
orchestration platform would not be able to restart it. As a result, it may be necessary to
restrict supported execution flows for these agents, so that other agents’ execution cannot
rely on them unless they were started through the orchestration platform.

Most evaluators stated that the current set of execution flows and corresponding op-
erators is sufficient for the majority of use cases they encounter. However, some raised
interesting suggestions around enabling execution flows that are not solely tied to the
agent life cycle but are also reactive to messages. For example, if a large volume of mes-
sages targets a particular agent or channel, it could be useful to automatically spawn
new agent or channel instances in response to traffic load. Similarly, allowing an agent to
trigger the startup of another agent could enable the design of an orchestrator agent. This
kind of improvement could be achieved by allowing agents not only to send messages but
also to request specific actions from the orchestration platform. To support this, agents
would need to implement additional capabilities, which would make them more tightly
coupled to the orchestration platform. This, however, conflicts with the requirement that
agents should remain as agnostic to the orchestration platform as possible. In a related
direction, since the orchestration platform has visibility into message traffic, a monitor-
type entity could be introduced at the programming language level, defined by a set of
rules and corresponding actions to be triggered when conditions are met.

Evaluators also suggested expanding the number of supported protocols for agent com-
munication. While the currently supported protocols cover most common use cases, there
are niche scenarios that require more specialized ones. Adding support for additional
protocols should be relatively straightforward, although the complexity depends on how
the protocol operates, particularly whether it is asynchronous or synchronous. The agent
definition currently separates the communication interface for input and output, which
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is useful in situations where the agent uses different protocols for receiving and sending
messages or when dealing with asynchronous communication. However, the current im-
plementation relies on a generic format that aims to be flexible enough for most protocols.
As a consequence, if an agent communicates using the same protocol for both input and
output, this cannot be expressed as a single interface. This limitation can lead to the
loss of protocol-specific features and may introduce additional latency or an increased
risk of failure in systems that are sensitive to performance. This challenge could be over-
come by adjusting the agent definition format and aligning it more appropriately with
the characteristics of each individual protocol.

The artifact is open-source, and anyone is welcome to contribute to its further de-
velopment. One area of the orchestration platform that may require more changes to
support user-specific use cases is the agent definition, particularly in relation to adding
support for additional protocols. While adding new protocols is relatively straightforward,
it still requires understanding the internal workings of the platform in order to modify
the appropriate parts of the codebase. To address this, decoupling the logic for agent
communication protocol extensions from the core of the orchestration platform could be
beneficial. This would make the platform more modular and easier to navigate, allowing
users to focus only on the communication protocol and its implementation when making
adjustments.

In the current setup, the orchestration platform acts as a centralized unit responsible
for starting agents, tracking their state and life cycle, and managing message passing
between agents through channels or environments. This design was chosen to provide
better visibility and control over agents. However, it comes at the cost of being a single
point of failure. Some evaluators suggested adding an alternative orchestration strategy
in which the platform remains responsible for starting agents, but once active, agents can
communicate directly with each other. In such a setup, even if the orchestration platform
fails, agents would still be able to continue interacting. Nonetheless, if the platform goes
down, no new agents can be started, and execution flows can no longer be triggered
or coordinated. Another proposed alternative involves deploying multiple orchestration
platform instances that share the same state, so if one instance fails, others can continue
facilitating communication between agents and other entities. Building on this idea, a load
balancing strategy could be introduced where, in larger systems, multiple orchestration
platform instances each manage a subset of agents. This would improve reliability and
also enhance scalability since no single platform instance would be responsible for the
entire system.

As mentioned previously, agents can only communicate with one another through the
orchestration platform. This design shifts the burden of communication away from the
agent implementation and onto the platform itself, allowing agents to remain flexible
regarding who they communicate with. However, this approach comes at the cost of per-
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formance, particularly in terms of latency, since all communication must pass through
an intermediary. In scenarios where performance is critical and latency must be kept as
low as possible, this may pose a limitation. To address this, it may be useful to intro-
duce multiple communication strategies, allowing users to choose whether agents should
communicate through the orchestration platform, with minimal implementation effort
and access to features like channel broadcasting, or communicate directly, which would
require more logic in the agent implementation and would exclude certain orchestration
specific capabilities.

High standards for agent authentication and overall security are not comprehensively
implemented in the orchestration platform. Although some basic logic has been imple-
mented and can be easily extended, it is not enforced in any meaningful way. To ensure
the artifact can be used in production environments, more attention needs to be given
to security and authentication. The primary responsibility could lie with the orchestra-
tion platform, which would verify all incoming and outgoing messages between agents
and other entities. However, some safeguards may also need to be implemented on the
agent side to ensure that agents accept messages only from known senders, such as the
orchestration platform itself.

The orchestration platform does not currently offer verbose logging or advanced ob-
servability features. This limitation makes it more challenging to operate in a production
environment, as users lack clear visibility into the platform’s behavior, including which
messages are being exchanged between agents, the life cycle status of agents, and over-
all resource utilization. Introducing a graphical user interface similar to those used in
Docker or Kubernetes could significantly improve monitoring and make it easier to track
and manage the orchestration platform in real-time.

The artifact and its implementation have been documented to a good extent. Non-
etheless, adding more examples that cover various aspects such as agents’ orchestration
specifications, agent definitions, and corresponding implementations would be valuable.
This would give users concrete examples that align with their own use cases, helping
to reduce the learning curve and improve familiarity with the platform. Additionally,
domain-specific tutorials and targeted use case guides could further support adoption and
ease of use.

Overall, the discussion reveals how design decisions shaped the artifact’s current cap-
abilities and limitations. While many of the identified challenges are technical in nature,
they also reflect deeper trade-offs between control, flexibility, and ease of use. These re-
flections not only inform future iterations of the platform but also contribute to a broader
understanding of what is required to design agent-oriented systems that are both express-
ive and operational in real-world contexts.
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Conclusion

The objectives of this research focused on the development of a programming language
and an associated declarative engine that enable the orchestration of heterogeneous mi-
croservices within a MAS architecture, while also supporting AI, cloud-based environ-
ments, and holonic systems [31]. Following an in-depth analysis of industry practices
through comparison of existing tools specialized in agent development and orchestration,
as well as a review of scientific literature in the relevant domains and the requirements of
the O HAI 4 Games project, opportunities for improvement and contribution were identi-
fied. Scientific literature primarily focuses on the application and protocol layers, offering
limited insight into coordination mechanisms [24, 33, 3, 17]. Industry practices emphasize
infrastructure and application layers, providing practical tools but lacking explicit sup-
port for communication flow specification [110, 18]. Both reveal gaps that leave room for
improvement in orchestrating distributed systems more effectively. The literature analysis
was also used to define a set of requirements that guided the creation of a new artifact.
This research was conducted using the Design Science Research (DSR) paradigm, which
is particularly suitable given that the goal of the research was to develop a novel artifact
[41].

In this research, agents orchestration is viewed through the lens of communication flow
specification. This refers to defining which agents and related entities communicate with
one another and what the communication configuration is. Orchestration also includes
the order in which agents are started.

The high-level requirements for the artifact included support for intelligent agents,
flexible specification and control of communication flows, support for orchestrating dis-
tributed agents, the ability to define agent execution order, support for agent hierarchies
through holonic systems, ease of integration with existing systems, compatibility with
agents developed using different technologies and protocols, ease of component replace-
ment, operational scalability, resilience and fault tolerance, and support for cloud envir-
onments.

The resulting artifact, named APi, consists of three core components: the agents or-
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chestration specification, the orchestration platform, and the agent definition. The orches-
tration specification defines which agents communicate and is described using the newly
developed programming language. This language is based on π-Calculus [76], chosen for
its suitability in describing communication flows in concurrent systems. The language was
developed using the ANTLR framework [75]. The second component, the Python-based
orchestration platform, includes the declarative engine and is responsible for consuming
the orchestration specification, starting agents in the correct order, and enabling coordin-
ation, communication, and synchronization among them. The third component, the agent
definition, describes how each agent is started and how the orchestration platform com-
municates with it. Since one of the artifact requirements was to support business logic
implemented in various technologies, the orchestration platform must be aware of how to
access and communicate with each agent.

The artifact ecosystem includes five elements: agent, channel, environment, holon, and
execution flow. An agent refers to a service developed by an engineer that collaborates
with other agents to achieve a shared goal. Agents never communicate directly but instead
interact through channels and environments. Channels are responsible for transferring
messages. An agent may send a message to a channel or receive one from it. A holon is a
semantic grouping of agents. The platform supports the collaboration of multiple holons,
which interact through an environment interface. Each holon may have an input and
an output environment. Agents that need to receive output from other holons subscribe
to messages arriving through the input environment, while those sharing output send
messages to the output environment. Execution flow refers to the order in which agents are
started. Supported flows include sequential, parallel, restart, and conditional execution
based on agent completion.

The integration of the artifact was demonstrated through four use cases developed
as part of the O HAI 4 Games project [64]. These include MMORPGs, cognitive agents
and gamification, autonomous vehicles, and a game streaming system. In some cases, the
artifact was integrated into existing systems. In other cases, systems were developed with
the artifact in mind from the beginning. This demonstrates the artifact’s adaptability.
These use cases were also used to evaluate integration effectiveness and to identify and
resolve issues during implementation. They provided insight into both strengths and
limitations of the artifact.

The artifact was evaluated by members of the O HAI 4 Games team and independent
experts with experience in building AI and agent-oriented systems. Evaluation methods
included interviews, a questionnaire, and ongoing feedback such as bug reports, feature
requests, and observations. Each artifact component was assessed along two dimensions:
artifact quality and standard programming language criteria. Artifact quality character-
istics were derived from the ISO/IEC 25002:2024 standard and measured in terms of in-
teroperability, modularity and reusability, usability, performance efficiency, and functional

179



Chapter 9. Conclusion

suitability. Standard programming language criteria included readability, writability, and
reliability [114]. Thematic analysis was used to analyze the collected feedback [62].

The results indicated a broadly positive sentiment across all components. The pro-
gramming language for specifying communication flows was appreciated for its simplicity
and minimalistic design, while still supporting key objectives such as a holistic view of
multi-agent configurations and flexible communication. The orchestration platform was
valued for its ability to manage agents based on the specification. Features such as support
for cloud environments, intelligent agents, and communication proxies were highlighted
as especially useful. The agent definition component was praised for enabling flexible
specification of communication protocols between agents and the orchestration platform.
Based on the evaluation, the artifact requirements were successfully fulfilled.

Identified areas for improvement include support for dynamic agent allocation at
runtime, instead of requiring predefined agents and flows. There were also requests for
the ability to connect with existing agents not started by the platform, which will be valu-
able in scenarios where agents are publicly accessible. Observability of orchestration and
execution was another mentioned request. Adding such features could improve flexibility
and system reliability.

The answer to the research question "What types of communication flows should be
supported by the programming language considering the needs of modern domains related
to microservice architecture, artificial intelligence, and cloud computing?" emphasizes the
importance of supporting structured and flexible communication among distributed com-
ponents. As detailed in chapter 4, the developed language enables the definition of com-
munication between agents, channels, environments, and holons, while also capturing the
configuration of such communication. This includes specification of the communication
protocol, the direction of communication, and the transformation of messages as they
move through the system.

In response to the research question "How to shape the syntax, semantics, and prag-
matics of a programming language for the orchestration of heterogeneous microservices
in multi agent system architectures by utilizing process calculus?" the language was de-
signed to be simple to use while still supporting key ideas from process calculus and more
specifically π-Calculus [76]. Chapters 4 and 5 present the implementation details. Pro-
gramming language syntax is easy to read and write, helping developers clearly describe
how agents interact. The semantics are based on π-Calculus principles, allowing agents
to collaborate through different execution flows such as sequential, parallel, conditional,
and restart. The goal was to build a language that makes it easier to define how agents
work together, while keeping the overall orchestration clear and manageable.

Regarding the question "How to support the design process of complex methods en-
semble utilizing holonic systems?", the artifact implements support for holonic structures
by introducing input and output environments. Chapters 4 and 5 outline how these en-
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vironments function as communication interfaces between holons and other system com-
ponents, promoting modular design, clear separation of concerns, and collaboration across
nested agent groups.

Given the favorable evaluation results across all assessed dimensions and the successful
fulfillment of the artifact requirements detailed in chapters 4 and 7, it can be concluded
that the research objectives "Develop a programming language that enables the orches-
tration of heterogeneous microservices in the multi agent systems architecture, artificial
intelligence, and cloud computing" and "Develop a declarative engine based on process
calculus capable of controlling communication flows between intelligent agents" have been
achieved.

Considering the demonstrated improvements in agent orchestration and communica-
tion flows specification enabled by the developed programming language, and supported
by the feedback presented in chapter 7, the hypothesis "Programming language for com-
munication flows specification based on process calculus shall enhance the orchestration
of heterogeneous microservices using multi agent systems" is confirmed by the outcomes
and contributions of this research.

Future research will address the identified limitations and continue evolving the arti-
fact to align with ongoing advances in Gen AI and architectures based on MASs. The
focus will be on expanding the artifact’s capabilities, increasing its adaptability to diverse
use cases, and ensuring its relevance in increasingly complex and intelligent distributed
environments.
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Appendix A

QUESTIONNAIRES

A.1 Michael van Elk

A.1.1 Agents’ orchestration specification

1. Do you find the agents’ orchestration specification easy to write and understand?

“I find the specification easy to read, understand and write, because:

• The import syntax matches the semantics of importing in code
• The . notation is an easy shorthand for a pass-through
• There is a limited set of top-level keys (import, environment, channel,

agent) and their meaning is clear at a glance
• The use of self also has equivalent semantics to its use in programming

languages

However the meaning and use of special keywords like ENV_INPUT is less imme-
diately clear. Does this reference all inputs, only those set in the environment,
or something else? Of course after familiarizing with the language and syntax
these things will matter less, but clarity at-a-glance is still good to aim for.”

—

2. Does reading a communication flow specification give you a clear understanding of
which agents communicate and how?

“Yes, the specification makes the communication graph explicit and therefore
easy to reason about and understand. The addition of agent parametrization
adds some measure of insight into how each agent performs its tasks.” —

3. Do you think the programming language is type-safe enough for reliable implement-
ation?

“I personally did not encounter any edge cases, and the specification seems
straightforward enough for effective type checking.” —
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4. Are the semantics of the language comprehensive enough to address real-world use
cases?

“By not specifying the message structure, the format allows for arbitrary mes-
sages to be sent/received, which does not impose restrictions on the use cases
to be implemented. It is similar in this way to an event bus. As long as com-
munication channels can be defined beforehand, the language seems adequate
to define the communication structure for a MAS. For cases requiring dynam-
ic/runtime definition of communication channels, this limitation will make it
unsuitable, but as I understand it this was an explicit design choice/goal.”

—

5. Are the supported element types (agent, channel, environment, holon, and execution
flow) intuitive and descriptive enough?

“Agent, channel, and holon are all intuitive abstractions to me, however as de-
scribed above, I do not see the need to define a separate entity (environment)
for channels used between holons. Holons are essentially an agent ‘type’, as
environments are essentially a channel ‘type’. However, for holons a separ-
ate abstraction is useful, as the parametrization is different, whereas channels
ideally would not be aware who is communicating over them.” —

6. Is the parametrization of agents useful in your use cases?

“As a system that aims to be agnostic to agent implementation, focusing on the
definition of communication topology, it makes sense to me to have some way
of seeing how agents handle their messages in the orchestration specification.
My only concern would be that the parametrization is not validated against
the implementation (as the framework aims to be agnostic to this), meaning
there may be a mismatch between specification and implementation.” —

7. Which of the implemented execution flows do you find most useful?

“I think that with the combination of sequential, parallel and conditional all
scenarios can be handled. Comparing it to Docker Compose, by default you’d
want to start everything in parallel, unless an agent has a dependency on
another, then you’d specify depends_on. Conditional execution makes less
sense to me in this setting, as you’d expect all created services to be always
‘alive’, and if one dies and this leads to another agent starting, I imagine the
communication graph would need to update, which goes against the principle
that these channels are defined at the start. It makes more sense to me in a
workflow-type situation, where you could use it to define control flow. However
perhaps I haven’t fully grokked the types of conditions and therefore scenarios
this could be used, so I will caveat the above based on this.” —
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8. Are there execution flows missing from the current system that you think should be
added?

“No, I think sequential + parallel + conditional is enough.” —

9. Is the range of supported communication protocols (TCP and UDP) sufficient to
support communication between agents, environments, and channels?

“I think the protocols cover the main ones you would expect/want in for this
kind of system. The agents are able to choose their protocol, and the channels
can translate to the orchestration’s internal protocol. Ultimately the protocol
shouldn’t matter much as long as the message can be passed.” —

10. Do you see the concept of holons as valuable? If so, in what ways?

“It is useful in the sense that you can hide from other agents that an agent
may interact with other agents before responding or taking further actions.
Where it seems less useful to me is that channels between holons are defined
as a separate entity (environment) rather than as a normal channel, which
means the abstraction is leaky, and does not effectively hide from the rest of
the system that a holon can be treated as if it was a single agent.” —

11. How straightforward do you find replacing an existing agent with another within
the system?

“As the system operates at the level of interfaces and communication channels,
the agent implementation is effectively hidden, so replacing one is easy.” —

12. How does specifying communication flows in this language compare to other agent
frameworks you have used?

“Specifying communication graphs beforehand is an interesting approach, and
makes it distinct from other frameworks I have encountered. Usually the system
makes no strong assumptions about who talks to who, and agents are free to
communicate with others however their implementation defines it. The ability
to define and run the agents in various ways over various protocols allows
for an ecosystem approach, where anyone could add any agent as long as it
adheres to the interfaces. However the need to define both the communication
and the specification up front requires coordination between agent developers
beforehand, which makes this pattern less natural in this system.” —

13. How useful do you find the channel’s ability to transform messages from one format
to another during transmission?
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“Having flexible mechanisms to transform messages at the communication layer
can be very useful for making heterogeneous systems compatible when you
don’t have access to their implementation, see for example the conversion of
OpenTelemetry traces in the otel-collector using the transform: block.”

—

14. Are there additional concepts you would find valuable in the language?

“At a systems level, it is useful to have a specification of the communication
channels in a MAS. It might also be useful to know what other communication
takes place, for example between an agent and some external service or data
source. This way the specification can move closer to defining the full ‘network
topology’ rather than only the inter-agent communication.” —

A.1.2 Orchestration platform

1. Do you see the artifact being implementable in the majority of systems?

“I would say that the flexibility in communication protocol combined with the
channel adapter pattern effectively allows the system to interoperate with other
systems.” —

2. What is the typical number of agents in your MAS?

“The system should scale to any number, but common use cases require only
a handful to implement.” —

3. Do you think the error handling mechanism covers a good amount of edge cases
(e.g., an agent goes down)?

“The restart mechanism using the + symbol seems as much as an orchestrator
can be expected to do, see Kubernetes as example which does the same. How
often and when to restart are of course parameters that can be set using arbit-
rarily complex logic, but this is not necessary.” —

4. Can intelligent agents (e.g., Gen AI-powered) be easily integrated with the platform?

“I see no reason why they shouldn’t be, as the platform does not specify any-
thing about agent’s implementation.” —

5. Do you see any performance downsides in the solution?

“I see no obvious limitations here, the communication protocols are all per-
formant and the logic not overly complex at runtime.” —

6. Is the support for distributed agents sufficient, particularly in terms of communic-
ation, synchronization, and fault tolerance?
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“I would say this is one of the main characteristics designed for in this solution,
so yes.” —

7. Does the cloud support (e.g., running in Docker [110]) match your needs in terms of
deployment flexibility, scalability, and compatibility with your existing infrastruc-
ture?

“Yes, the main requirement for cloud environments is containerization, and the
platform supports it.” —

8. Are there any additional functionalities of the orchestration platform that you would
find useful?

“Dynamic execution and communication graphs would allow the system to be
useful in more scenarios. The comparison would be between Docker Compose
and Kubernetes: both use static configuration files, but the presence of an API
server in Kubernetes allows for dynamic discovery of other services. Perhaps
a static communication / execution graph can be derived from the API server
(or equivalent) at any point in time, offering its benefits while allowing a more
dynamic ecosystem.” —

A.1.3 Agent definition

1. Is the agent definition easy enough to write?

“Yes, the simplicity and YAML-like syntax make it easy to write.” —

2. Is the agent definition clear and accessible to non-technical stakeholders, such as
project managers or domain experts?

“It is clear to me, but being technical, I cannot speak strongly to whether
it is clear to non-technical stakeholders. I expect non-technical stakeholders
will be confused by the many technical terms in the agent definitions, such as
data-type, type: unix, and values such as <!eof!> probably look scary to
them.” —

3. Are the supported properties for agent definition sufficient for your use cases? If
not, what is missing?

“I do not have a strong opinion here, as the agent definition does not limit the
internal logic of the agent.” —

4. How much effort is required to adjust an existing agent for inclusion into the system
based on the artifact?

196



Appendix A. QUESTIONNAIRES A.2. Rio Kierkels

“One limitation mentioned in the documentation is of concern here:

While support for different protocols on input and output provides flexibility, it
adds complexity for request-response protocols. For example, HTTP expects a
synchronous response to a request, but here, requests and responses may occur
on different endpoints.

Agents dependent on synchronous request/response mechanisms would need
to implement workarounds for this limitation, but for asynchronous / message
based agents the customization does not seem too much.” —

5. Do updates to your existing agent business logic after its inclusion in the artifact-
based MAS require changes to the agents’ orchestration specification (particularly,
specification of communication flows)?

“The same limitation for agents designed around synchronous communication
patterns applies here I think. However after the initial conversion, further
updates likely would not require further changes.” —

6. Which communication protocols do your agents utilize for communication with ex-
ternal systems?

“HTTP and SSE” —

A.2 Rio Kierkels

A.2.1 Agents’ orchestration specification

1. Do you find the agents’ orchestration specification easy to write and understand?

“It is quite easy to learn, possibly because the language itself is quite small.
However I don’t completely see why the orchestration spec and the ad need
to be in separate languages. Unless if statements and loops are introduced, it
might all work from the YAML markdown language.” —

2. Does reading a communication flow specification give you a clear understanding of
which agents communicate and how?

“It requires a larger amount of context to fully understand the graph. Just
looking at the channels inside the body of an agent block isn’t enough. Also
the start sequence doesn’t show how they communicate.

It would help if you could pass in agents’ channels as parameters while instan-
tiating them e.g. agent_1(agent_2.c). Or use pipelining like some functional
languages can do like Haskell for example.” —
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3. Do you think the programming language is type-safe enough for reliable implement-
ation?

“The types of a symbol can only be determined when reading the entire doc-
ument as they might mean different things depending on their position within
the specification. This makes static analysis harder along with harming readab-
ility and not providing helpful hints around the intent of the system or elements
of the system.” —

4. Are the semantics of the language comprehensive enough to address real-world use
cases?

“A capability that I’m missing is the support of dynamism. Having agents/ho-
los come and go and automatically setup and break connections will make the
system a lot more suitable for a range of other applications. Not to mention
the increased reliability it brings.” —

5. Are the supported element types (agent, channel, environment, holon, and execution
flow) intuitive and descriptive enough?

“The current role of environment doesn’t seem to be different enough from
channels to warrant their existence.” —

6. Is the parametrization of agents useful in your use cases?

“The parametrization itself is quite useful although I’d rather have seen it be
required instead of optional. For example, making passing channels as argu-
ments required and not allowing the capture of channels from the outer scope
will reduce the errors people can make.” —

7. Which of the implemented execution flows do you find most useful?

“Decoupling the direct dependency of one agent on another by utilizing chan-
nels. This helps the resilience and composability of the system as agents don’t
need to explicitly support another agent. It also allows for out-of-order starting
of agents, especially if the channels support some kind of buffering.” —

8. Are there execution flows missing from the current system that you think should be
added?

“A shared random access data storage pool that is accessible by all agents would
be helpful. The agents could together build up a knowledge base or maybe a
history of the system or subsystem they’re responsible for without being locked
into a streaming or request response I/O system.” —
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9. Is the range of supported communication protocols (TCP and UDP) sufficient to
support communication between agents, environments, and channels?

“In its current form I think it is adequate. However the system will probably
benefit from adding SCTP as an additional layer 4 protocol. This is a message
based protocol with characteristics of both UDP and TCP but with message
boundaries built in. This removes the need for delimiter configuration as shown
in the .ad files.
Apart from that consider swapping out netcat for socat as a transport utility.
Not only will it enable SCTP as a protocol, but many more as well. It can be
the basic building block for channels with its support to hook up any program
to any protocol or other program, allowing for easy transport chaining and
integration of data transformation programs.” —

10. Do you see the concept of holons as valuable? If so, in what ways?

“Yes, very much so. If only to allow grouping of agents creating a compositional
primitive. I am less enthusiastic about the difference in interface between holos
and agents. Apart from creating collections of agents I don’t see any func-
tional difference between holos and agents. To allow for better composition
the agents and holos could offer identical interfaces. Over time holos can start
distinguishing themselves more by offering additional features like the afore-
mentioned data storage component.” —

11. How straightforward do you find replacing an existing agent with another within
the system?

“Very much so. This seems to be enabled by channels and their ability to do
data and transport protocol transformations. This makes it a very extensible
and easily adaptable system.” —

12. How does specifying communication flows in this language compare to other agent
frameworks you have used?

“I have no experience with agent orchestration frameworks but from my point of
view it does not really differ from normal service software orchestration. Even-
tually it all comes down to which interfaces do you support. Locking down
your Interface Definition Language (IDL) combined with having predefined
functions described in that IDL (thing request/reply messaging or key/value
storage) creates a high level of interoperability between components. Orches-
trating the implementations of these IDL based functionalities becomes less
important and you can tackle that problem in any way you like. You can go
full on kubernetes api specifications, which can be very verbose, or minimize
it into its own little IDL like protobuf (which coincidentally can function as a
serialization format as well).” —
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13. How useful do you find the channel’s ability to transform messages from one format
to another during transmission?

“Extremely useful. This is probably its biggest strength.” —

14. Are there additional concepts you would find valuable in the language?

“Explicit types in the agent parameter signatures. This will help reduce errors
and will allow language expansion in the future without having to worry too
much about needing to invent additional syntax. It will also allow you to
remove “special” variables, like ENV_INPUT and ENV_OUTPUT since they can be
passed to the agent’s parameters explicitly. Types tend to make languages
more expressive in their intent.” —

A.2.2 Orchestration platform

1. Do you see the artifact being implementable in the majority of systems?

“Only in systems where non-determinism and high latency are acceptable, I
do see it able to be implemented. As I mentioned before, this screams classic
service oriented architecture.” —

2. What is the typical number of agents in your MAS?

“Not directly applicable but I’ve run and designed systems with around 30-50
services.” —

3. Do you think the error handling mechanism covers a good amount of edge cases
(e.g., an agent goes down)?

“I’ve not seen any particular mention of failure handling mechanisms apart from
restarting processes. Often that’s enough but because scheduling, migration
and network partition tolerance have not been covered there are huge areas
where it is unclear how the system behaves when faced with those types of
problems.” —

4. Can intelligent agents (e.g., Gen AI-powered) be easily integrated with the platform?

“I’ve not seen any indication that these types of agents require special hand-
ling. Apart from generally higher latency and possibly specialized hardware
requirements, these function similarly to normal networked services.” —

5. Do you see any performance downsides in the solution?

“IDL’s tend to be decoupled from implementation. This allows for performance
increases in different agents and different parts of the orchestrator without
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having to redesign the entire system. The one thing that might help is control
around channel buffers. Network latency, slow agents or network flakiness
might cause messages to pile up. Not having control over queues might mean
that you’ll be operating with sub par throughput.” —

6. Is the support for distributed agents sufficient, particularly in terms of communic-
ation, synchronization, and fault tolerance?

“Support for mesh-like transports would greatly benefit agent distribution cap-
abilities. Technologies like NATS or MQTT make it easy to build reliable
distributed clusters of message passing systems. The current supported trans-
ports tend to be point to point technologies excluding the underlying layer 3
IPv4 and IPv6 multicast addresses. Another helpful addition would be native
support for the Cloud Events specification. This helps standardize messages of
events between components.” —

7. Does the cloud support (e.g., running in Docker [110]) match your needs in terms of
deployment flexibility, scalability, and compatibility with your existing infrastruc-
ture?

“Docker has little to do with cloud support. They mainly solved the distribu-
tion problem of programs which later was formalized in the OCI specification.
However, because most cloud providers do have offerings that allow running
container images, it is the very minimum I’d expect of a system to deliver as a
distribution artifact.” —

8. Are there any additional functionalities of the orchestration platform that you would
find useful?

“Interface schema definition, discoverability and validation would help a lot
with preventing incompatible agents and channels to be connected to each
other. Also, I’ve seen no mention around transport security. Finally dynamic
agent creation, deletion or other topology related dynamics would help a lot in
its flexibility and resilience.” —

A.2.3 Agent definition

1. Is the agent definition easy enough to write?

“Yes. Although it’s not easy to see if some values are special to the definition
or just strings. <!eof!> is a good example of this. However this might be a
shortcoming of YAML not requiring strings to be quoted.” —

2. Is the agent definition clear and accessible to non-technical stakeholders, such as
project managers or domain experts?
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“Yes I think so. Although quite some technical knowledge is required to con-
figure it directly. For example, non-techinical people will probably not know
why or when to use the HTTP protocol vs raw TCP, what a delimiter is in the
context of message parsing or what JSON is.” —

3. Are the supported properties for agent definition sufficient for your use cases? If
not, what is missing?

“I’m missing message schema definitions. These help to automatically figure
out if agents are compatible, both forwards or backwards.” —

4. How much effort is required to adjust an existing agent for inclusion into the system
based on the artifact?

“Because most agents are integrating with hosted LLM API endpoints over
HTTP. The main problem I see is the lack of request response support on
a single channel. This would require quite some coordination by some kind
of broker component matching up the proper responses to the proper agents
originally sending out the request.” —

5. Do updates to your existing agent business logic after its inclusion in the artifact-
based MAS require changes to the agents’ orchestration specification (particularly,
specification of communication flows)?

“Yes, see the previously mentioned point about HTTP request/response cycles.”
—

6. Which communication protocols do your agents utilize for communication with ex-
ternal systems?

“Mainly HTTP+JSON. Sometimes newline delimited JSON.” —

A.3 Igor Tomičić

A.3.1 Agents’ orchestration specification

1. Do you find the agents’ orchestration specification easy to write and understand?

“Yes. The specification uses minimalistic syntax that is compact and readable
(e.g., agent a : self -> c). However, it has a learning curve due to custom
syntax and requires familiarity with concepts like channels and holons. That
said, once grasped, it reduces verbosity compared to traditional agent frame-
works.” —
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2. Does reading a communication flow specification give you a clear understanding of
which agents communicate and how?

“Yes. The specification’s structure makes flows fairly explicit: inputs, outputs,
transformation paths, and startup orders are clearly defined. With small sys-
tems, this gives a complete mental model. However, for large systems with for
example >30 agents, navigation might become cumbersome without visualiza-
tion tools.” —

3. Do you think the programming language is type-safe enough for reliable implement-
ation?

“Although message formats and channels can be defined, there seems to be
no static or dynamic type checking. Communication mismatches (e.g., sending
XML to a JSON listener) are not flagged unless caught in transformation rules?
Introducing basic typing (e.g., schemas) might improve robustness.” —

4. Are the semantics of the language comprehensive enough to address real-world use
cases?

“Mostly yes. The language covers environments, channels, agents, holons, ex-
ecution flows, and transformation logic. The 4 provided demonstrations prove
its capacity to handle systems with audio/video streaming, multi-agent cog-
nition, and inter-vehicle messaging. However, dynamic runtime behaviors are
currently unsupported - before you start the orchestration system, you must
predefine which agents exist, how they communicate, and how they start up —
all in the specification file. Once the system is running, you cannot add a new
agent, change an existing agent’s role, or update communication paths without
restarting everything.” —

5. Are the supported element types (agent, channel, environment, holon, and execution
flow) intuitive and descriptive enough?

“Yes. The roles (agent, channel, environment, holon) are clearly separated.
Each maps well to a known concept in MAS or distributed systems. Their
names are intuitive and allow a beginner to quickly grasp the function of each
unit.” —

6. Is the parametrization of agents useful in your use cases?

“Yes. Agent parameterization enhances modularity and reusability. It is par-
ticularly valuable when the same agent logic is reused with different commu-
nication channels, as seen in multi-instance deployments in the MMORPG and
streaming use cases.” —
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7. Which of the implemented execution flows do you find most useful?

“Parallel and sequential execution flows are particularly useful for orchestrating
startup orders and pipelined agent behavior. The ability to express retries (+)
and error-based branching (!) also contribute to operational resilience, although
limited error semantics are a bottleneck (there’s no structured way to handle
different kinds of failures differently, to define custom recovery strategies (e.g.,
restart 3 times and then alert), to route failed messages to a separate agent
for inspection, to clean up or reset the system after failure (e.g., closing ports,
freeing memory), or to log and report errors in a consistent way).” —

8. Are there execution flows missing from the current system that you think should be
added?

“Possibly:

• Trigger-based execution (e.g., start agent after N messages)

• Timeout-based execution or retries with backoff

• Looping flows based on internal logic/state of agents

” —

9. Is the range of supported communication protocols (TCP and UDP) sufficient to
support communication between agents, environments, and channels?

“Maybe not quite. TCP and UDP cover many use cases (especially for high- and
low-latency needs), the lack of native support for pub-sub mechanisms, message
queues (like MQTT, AMQP), or secure protocols (e.g., TLS over HTTP) might
limit interoperability with more advanced distributed architectures.” —

10. Do you see the concept of holons as valuable? If so, in what ways?

“Yes. Holons allow for hierarchical composition of agents, which is critical
in complex systems like autonomous fleets or cloud platforms. They promote
encapsulation and logical separation.” —

11. How straightforward do you find replacing an existing agent with another within
the system?

“Relatively easy. If the replacement agent conforms to the same communic-
ation interface (as defined in its .ad file), it can be dropped in with minimal
orchestration spec change. However, lack of runtime introspection or validation
means some mismatches may only manifest at runtime.” —

12. How does specifying communication flows in this language compare to other agent
frameworks you have used?
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“APi feels good in communication clarity and lightweight syntax, compared to
general-purpose MAS frameworks like JADE or SPADE. But, it seems it lacks
integrated agent behaviors or reasoning models (e.g., BDI), requiring these to
be handled externally or manually coded.” —

13. How useful do you find the channel’s ability to transform messages from one format
to another during transmission?

“Yes. Transformation logic is critical when bridging heterogeneous agents.”
—

14. Are there additional concepts you would find valuable in the language?

“Yes. Suggested improvements:

• Dynamic agent lifecycle management (add/remove at runtime),

• Advanced triggering conditions,

• Security constructs (authentication, authorization)

” —

A.3.2 Orchestration platform

1. Do you see the artifact being implementable in the majority of systems?

“Yes - especially for research prototypes, hybrid AI systems, and cloud-native
applications. The Docker-first approach and open communication standards
make it flexible. Limitations might exist in integrating with legacy systems,
where full control over agent startup isn’t possible.” —

2. What is the typical number of agents in your MAS?

“Around 150” —

3. Do you think the error handling mechanism covers a good amount of edge cases
(e.g., an agent goes down)?

“Partially. Basic execution flow recovery exists (e.g., retries), but there’s no
full-fledged error channeling, fallback routing, or structured teardown logic.
Ports may remain open.” —

4. Can intelligent agents (e.g., Gen AI-powered) be easily integrated with the platform?

“Integration is protocol-agnostic and can support API-driven agents like LLMs,
as seen in the B.A.R.I.C.A. case. Wrappers can encapsulate any logic, and or-
chestration remains unchanged as long as the communication contract is met.”

—
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5. Do you see any performance downsides in the solution?

“Possibly:

• Lack of backpressure or flow control in high-throughput UDP scenarios
(when messages are flying in very fast, the system seems to have no built-
in way to slow things down or manage the load and some messages might
be lost or cause system overload)

• No built-in queueing or buffering?

• No agent resource usage monitoring

” —

6. Is the support for distributed agents sufficient, particularly in terms of communic-
ation, synchronization, and fault tolerance?

“Relatively yes. Agents can be distributed across machines or containers, but
coordination is possibly limited: there seems to be no discovery service, no cent-
ralized registry. This might limit use-cases in mission-critical or geo-distributed
setups.” —

7. Does the cloud support (e.g., running in Docker [110]) match your needs in terms of
deployment flexibility, scalability, and compatibility with your existing infrastruc-
ture?

“Yes, Docker and Docker Compose support enable easy local and cloud deploy-
ments.” —

8. Are there any additional functionalities of the orchestration platform that you would
find useful?

“Some brainstorming here:

• Web-based orchestration visualization and monitoring

• Centralized logging and telemetry collection

• Runtime validation of orchestration specs

• Secure protocol support (TLS, OAuth)

” —

A.3.3 Agent definition

1. Is the agent definition easy enough to write?

“Yes, straightforward and well-documented. Developers familiar with Docker
or Compose will find the structure intuitive. Templates could help reduce
boilerplate further.” —
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2. Is the agent definition clear and accessible to non-technical stakeholders, such as
project managers or domain experts?

“Mostly. Technical users will handle it easily. For non-technical stakeholders,
a visual or form-based editor would enhance accessibility and prevent syntax
errors.” —

3. Are the supported properties for agent definition sufficient for your use cases? If
not, what is missing?

“Mostly yes. Perhaps additions like retry policies, health checks, environment
variables, and lifecycle hooks would improve usability.” —

4. How much effort is required to adjust an existing agent for inclusion into the system
based on the artifact?

“Low to moderate effort. As long as the agent supports one of the accepted
I/O formats and can be started by the platform (UNIX, Docker, Kubernetes),
inclusion mostly involves defining its .ad file. No codebase changes are typically
required.” —

5. Do updates to your existing agent business logic after its inclusion in the artifact-
based MAS require changes to the agents’ orchestration specification (particularly,
specification of communication flows)?

“Not necessarily. If interfaces remain unchanged, the orchestration spec prob-
ably doesn’t need updating. However, changing communication format or chan-
nel names might require updates. Decoupling is good, but could be improved
with interface abstraction layers.” —

6. Which communication protocols do your agents utilize for communication with ex-
ternal systems?

“NETCAT, HTTP.” —
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