Course title: DATABASES II

Lecturers	Full Prof. Kornelije Rabuzin, Ph.D., Martina Šestak, M.Inf.
Language of	Croatian and English
instruction Schedule	60 teaching hours
Concurre	- (30 lectures + 14 seminars + 16 laboratory exercises)
Study level	Bachelor
Study	Information / Business Systems
programme Semester	Winter
ECTS	6
Goal	The goal of this course is to introduce the students to methods of database
	design. The content of the course is focused on design of relational databases
	because technology of relational databases, as a dominant commercial
	technology, is a base for development of: relational/object systems, temporal
	database management systems and knowledge bases, and data warehouses.
	At the end of this course, the students should be able to perform a conceptual
	design of a selected application domain. After that, using methods of logical and
	physical database design they should be able to design a correct schema of the
	relational database. Since the students usually have problems with formalization
	of problem domains, second goal of the course is to introduce the students to
	elements of formal language for databases. This way, the students are able to
	understand database problems and gain the necessary knowledge for higher
	levels of education in fields in which database technology plays important or
	central role.
Content	1. Introduction
	Introducing the students to: content and goal of the course, literature, classes
	organization, requirements for passing the examination. Databasedesign
	problems.
	2. Conceptual database design
	1.1. Graphical languages for conceptual database design
	Concepts and reality. Objects. Object relationships. Graphical languages: ER,
	ORM, UML.
	1.2. Elements of ER and UML (part I)
	Entity sets. Attributes. Relations. Diagrams. Multiplicity of binary relations. Types
	of relationships. Roles in relationships. Relationship attributes. Transformation
	of n-ary relationship into a binary relationship.

1.3. Elements of ER and UML (part II)
Associations. Classification. Generalization. Aggregation. Subtypes and
supertypes. Partitions. Multiple supertypes. Generalization and inheritance.
Weak entities.
1.4. Elements of ER and UML (part III)
Constraints modeling: constraints classification, keys, uniqueness, referential
integrity, relationship types. Design principles: correctness, redundancy
elimination, simplicity, selection of adequate relations, selection of adequate
element types.
2. Logical database design
2.1. Problem of logical database design
Database schema. Database. Redundancy. Normalization. Dependencies in
databases. Overview of normal forms.
2.2. Functional dependencies
Syntax and semantics of functional dependencies. Logical consequence.
Implication problem for functional dependencies. Method of solvingthe
implication problem for functional dependencies.
2.3. Types of functional dependencies
Triviality. Partiality. Transitivity. 1NF. Redundancy and update anomalies.
2.4. Decomposition of relational schema
Decomposition preserving information. Decomposition preservingdependencies.
Normal forms: 2NF, 3NF, BCNF.
2.5. Algorithm of 3NF synthesis
Canonical cover. Algorithm of 3NF synthesis.
2.6. Multivalues dependencies
Syntax and semantics of multivalueddependencies. Logical consequence and
implication problem. Methods for solving implication problem.
2.7. Joindependencies
Syntax and semantics of join dependencies. Logical consequence and implication
problem. Methods of solving of the implication problem.
2.8. 4NF i 5NF
4NF. 5NF. Final notions of normalization. Denormalization.
3. Relationship between conceptual and logical database design
Translation of ER diagram into relational database schema. Improvement of

	relational database schema by using logical database design. Practical
	recommendations for database design.
	4. Database evolution
	Relational databases. Generalized relational databases. Object/relational
	databases. Deductive database. XML and database.
Exercises	Using adequate graphical tools and database management system, the students
	learn to design and implement a database, and to build a simple business
	application.
Preconditions	Databases I, Data structures
Realization and	Classes: Lectures, seminars and exercises.
examination	Examination: Students take two written exams throughout the semester. After
	passing the laboratory exercises and presenting the seminar project, students
	can take the final oral exam.
Related courses	1. Imperial College, London, Department of Computing, Databases;
	2. Stanford University, Department of Computer Science, A First Course in
	Database Systems;
	3. James Madison University, Department of Computer Science,
	Fundamentals of Relational Databases;
	4. University of Massachusetts, Databases;
	5. California State University, Los Angeles, Department of Computer
	Science, Database Desig.
Literature	Basic:
	1. Lectures
	2. H. Garcia-Molina, J. D. Ullman, J. Widom, Database Systems: The
	Complete Book, Prentice Hall, 2002.
	Additional:
	1. C. J. Date, An Introduction to Database Systems, Addison Wesley, 2004.
	2. G. V. Post, Database Management Systems, Mc Graw-Hill, 2001.
	3. R. A. Mata-Toledo, P. K. Cushman, Fundamentals of Relational
	Databases, Schaum's Outline Series, McGraw-Hill, 2000.
Online sources	http://www.rational.com/uml,
	http://www.dbpd.com,
	http://www.BRCommunity.com, http://www.dbdebunk.com