
Course title: SOFTWARE ANALYSIS AND DESIGN

Lecturers Assoc. Prof. Zlatko Stapić, Ph. D.
Full Prof. Neven Vrček, Ph.D.
Marko Mijač, Ph.D.
Dijana Peras, M.Inf.
Žana Zekić, M.Inf.

Language of instruction Croatian and English

Study level Master

Study programme Information and Software Engineering

Semester 1st (winter)

ECTS 6

Goal The goal of the course software analysis and design is to introduce the students to
the life cycle and development phases of a modern software product with the
emphasis on architectural design and implementation of mobile software products.
Software development has become an important branch of industry which has its
patterns and related standards. The course deals with all the phases of the software
development life cycle, which the new software product must undergo at the
beginning of its creation: analysis of the system's domain, specification of the
software requirements, methods and techniques of software modelling, software
development, software testing and removal of errors. In this way students learn
about basic approaches used in development and engineering of complex, software-
based systems, and they also learn about modern tools that facilitate software
development and steps of software development lifecycle.

General and specific
learning outcomes

Content 1. Paradigms of software systems’ development life cycle

Life cycle of a software product. Approaches to the development of software system
and possible variations: waterfall, spiral, agile. Complex development cycles (parallel
development, feedback).

2. Software system development lifecycle

Project specificities in software industry. Relationship between the project and the
development cycle of a software product. Characteristic methods of planning and
tracking the project in development of a software product. Expenses of a product.
Project teams and their characteristics: specialization areas, required knowledge,
overlapping of the knowledge areas. Virtual project teams and tools that support
group work (teamwork, groupware).

3. Analysis of software system requirements – users’ requirements

Definition of user’s requirements. Business processes and influence on users’
requirements. Sources of users’ requirements. Organizing the users’ requirements.
Techniques of gathering the users’ requirements: interviews, inquiries, business
documents, ...

4. Analysis of software system requirements – system requirements

Definition of system requirements. Types of system requirements. Mapping between
user and system requirements. Functional and non-functional requirements.
Transition and dynamic modelling. Organizing and documenting of functional and
non-functional requirements.

5. Software system modelling

Software system architecture and basic construction elements. Software modelling
diagram techniques. Standards and approaches to modelling of software system.
Basic concepts of OO approach. Inheriting, encapsulation, polymorphism. Object-
oriented approach in program languages and tools.

6. UML paradigm

UML diagrams and their use in design phase of software development.

7. Concepts of software product development design

Definition of the software product development design. Basic questions of
architecture development (e.g. data requirements, managing the memory,
exceptions, etc.). Design principles (hiding the information, cohesion and pairing).
Interactions between the design, functional and non-functional requirements. Design
oriented to quality of the attributes (ex. reliability, usability, performance,
possibilities of testing, tolerance of errors, etc.). Architectural styles, reusability.
Interoperability. SOLID design principles.

8. Tools for development and modelling of software systems

Types of tools for development and modelling of software systems (ex. architectural,
for static analysis, for dynamic estimation, etc.). Typical tool architectures.
Possibilities and limitations of tools.

9. Software system architecture

Layers of software system architecture and typical architectures. Characteristic
technologies in each of the layers. Connecting the layers and integration of the
software system. Influence of the architecture on characteristics of the software
system (resistance to incidents, malfunctions, speed).

10. Components and integration

Component paradigm. Reusability of the program code. Types of software
components. Technologies for the development and integration of software
components. Managing the transactions of the components. Integration of the
components. Market of the software components.

11. User interface and user experience

General principles of the design of human computer interface. Psychology of the
human computer interface. Basic elements of visual design (e.g. colors, icons, letter
types, etc.). Reply time and feedback information. Design approaches (e.g. Oriented
to me, the forms, questions-answers, etc.); Localization and internationalization.
Advanced design methods of the human computer interface. Design of augmented
virtual reality. Metaphors and conceptual models.

12. Prototyping

Purpose of the prototype in software industry. Types of prototype: horizontal and
vertical. Prototype planning. Documenting the prototype. Testing scenarios. Relation
between the prototype and the real system. Software tools for prototype
development.

13. Metrics in the software development

The principles of software metrics and their applicability. Types of metrics: lines of
program code, functional points. Metrics and life cycle. Methods for estimating
complexity of software system. Static and dynamic code analysis.

14. Software testing

Significance and approaches to testing of software system. Testing of the
components and the entire integrated software system. Relation of software
performance and users’ requirements. Testing scenarios. Analysis of the range of
questioning (e.g. branch, basic course, multiple conditions, data flow, exceptions,
etc.). Processing of the exceptions (writing testing examples for starting the
exceptions’ processing). Integration testing. Testing based on operational profiles.
Testing of non-functional requirements (e.g. usability, security, compatibility,
accessibility, etc.). Regression testing. Testing tools. Defining the system
acceptability. Testing in the domain of DevOps.

15. Specific program architectures

Transaction and analytical software architectures. Critical demands. Design trade off
related to goals of the design and development. Data warehouses, OLAP systems,
architectures for data mining, ERP systems, distributed systems.

Exercises Laboratory exercises guide students through the development process of a complex
mobile system, focusing the artifacts used and created in each phase, from
conceptual modeling through continuous integration, delivery and deployment of
final product. During exercises the students will work with the tools covering the full
software development lifecycle as well as with technologies of mobile applications
development. Agile software development practices are employed as well as industry
related tools for source code versioning, project and issues management.

Realization and
examination

Classes: lectures and exercises

Exam: team project and oral exam

Related courses 1. University of Goetenborg. - Software Analysis and Design
2. Georgia Tech University / Udacity - Software Architecture & Design
3. University of Alberta / Coursera - Software Design and Architecture Specialization
4. Escuela Politécnica Superior - Software Analysis and Design Project
5. The IEEE Computer Society - Software Design Course
6. University of Sheffield, Object Oriented Programming and Software Design,

Software Development for Mobile Devices

Literature R. Stevens, P. Brook., K. Jackson, S. Arnold: Systems Engineering, Coping with
Complexity, Prentice Hall, 1998.

M. Fowler with K Scott, UML Distilled: Applying the Standard Object Modelling
Language, Addison-Wesley, 1997.

S. Bennett, S McRobb R Farmer, Object-Oriented Systems Analysis and Design using
UML, McGraw-Hill, 1999.

P. Stevens, R Pooley, Using UML - software engineering with objects and components,
Addison Wesley, 2000.

Sommerville, Software Engineering, 5th edition, Addison-Wesley, 1996.

R. S. Pressman, Software Engineering: A Practioner's Approach, 5th edition, McGraw-
Hill, 2000 (or the European adaptation by D. Ince).

https://www.gu.se/en/study-gothenburg/software-analysis-and-design-dit184
https://www.udacity.com/course/software-architecture-design--ud821
https://www.coursera.org/specializations/software-design-architecture
https://www.uam.es/EPS/documento/1242678755497/17833_PADSOF_eng.pdf?blobheader=application/pdf
https://www.computer.org/product/education/software-design-course
http://www.dcs.shef.ac.uk/intranet/teaching/public/modules/msc/com6516.html
http://www.dcs.shef.ac.uk/intranet/teaching/public/modules/msc/com6510.html

T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.

