
1

Course title: SOFTWARE ENGINEERING

Lecturers Full Prof. Vjeran Strahonja, Ph.D.,
Assoc. Prof. Zlatko Stapić, Ph.D.
Snježana Križanić, M.Inf.
Marko Mijač, Ph.D.

Language of instruction Croatian and English

Study level Bachelor

Study programme Information and Business Systems

Semester 4th (summer)

ECTS 6

Goal The goal of Software Engineering course is to give students the insights into the most
important phases, activities and the best practices of software product development,
management of development project, tools to support this process, and associated
technologies. The discipline of Software Engineering is a young discipline of science
and the profession, but it is being highly intensively developed and is constantly
undergoing numerous changes. By having insights into the most important stages of
the development process, as well as understanding the mentioned process, students
will gain fundamental knowledge about this complex area, which will give them a
solid ground for their further development in these areas of development of
software, applications for mobile or smart devices, web applications, and other
systems like internet of things, embedded systems and alike.

General and specific
learning outcomes

Content 1. Software Engineering as a Discipline (2)

Definition of discipline of software engineering and software. Positioning software
engineering in relation to other disciplines. Professional software development in
response to the software crisis. Engineering approach to development. Professional
ethics.

2. Software Engineering Methodology (3)

General structure of software engineering methodologies. Object-oriented and agile
methodologies for the development of software systems. Software product
development process. Primary and secondary activities in program development
(modeling, programming, documentation, testing, verification, validation,
management ...). Program development methods and techniques. roles in program
development. Development and work environments.

3. Models and Modeling in Software Engineering (3)

Modeling as the basis of engineering design. Object-oriented development of
software systems. Historical development, sources and role of UML in software
development. Modeling of structure, behavior and interactions. Model hierarchy and
metamodels.

4. Analysis and specification of user requirements (2)

Engineering requirements. Functional and non-functional requirements.
Requirement engineering processes. Claim Elicitation. Request specification.
Requirement validation. Manage user request changes. User requirements
specification document. Good practice examples.

2

5. Software product structure and behavior design (8)

Object-oriented design. UML diagrams of structure, behavior and collaboration.
Develop use cases and / or user stories. Diagram of classes, objects and packages.
Behavior modeling of activity diagrams and state machines. Modeling of interaction
with sequence diagrams, communication and timing. Components and deployment
diagrams. Software product specification document.

6. Software Product Development (8)

Integrated development environments. Implementation of object-oriented principles
in the selected programming language and development environment. Prototyping
user interfaces. Implementation of UI concepts and experience in selected
development environment and UI design tools. Implementation of working with data.
Development frameworks. Organization of code. Code versioning.

7. Software System Development Management (2)

Project planning and management. Risk management. Cost of development and
implementation. Versioning and quality management. Tools for team-based
development and project management of software system development.

8. Testing and delivery of software product (2)

Testing and checking the quality of the software product. DevOps basics. Preparing a
software product for delivery. Delivery and maintenance of software. Tools and
technologies for checking and delivering software.

Exercises Laboratory exercises are following the content of lectures and practically represent
all stages of software development process that are theoretically addressed in
lectures based on the practical part of exercises presented by the teacher, and on
materials available in learning management system, students are required to
implement additional assignments.

Realization and
examination

Classes: lectures and exercises

Exam: three project-related assignments (analysis, design, implementation), final
exam or oral exam

Related courses 1. Introduction to Software Engineering, Carnegie Mellon University,
https://www.cs.cmu.edu/~aldrich/courses/413/

2. Introduction to Software Engineering, University of Adelaide,
https://www.adelaide.edu.au/course-outlines/108366/1/sem-2/

3. Introduction to Software Engineering, Douglas College,
https://www.douglascollege.ca/course/cmpt-2276

Literature Basic

Sommerville I., Software Engineering, 8th edition or newer, Addison Wesley,
2007 or newer

Optional

Teaching and other course materials available in the learning management
system,

Authorized sources, web materials, and books on topics that the course
addresses, which due to frequent and major changes in technologies and tools
are to be defined for each generation of students separately.

https://www.cs.cmu.edu/~aldrich/courses/413/
https://www.adelaide.edu.au/course-outlines/108366/1/sem-2/
https://www.douglascollege.ca/course/cmpt-2276

